7th Number Theory Meeting http://ntmeeting.polito.it

Continued fractions with extraneous denominators

Marzio Mula
Università di Trento

Given a number field K and a prime ideal \mathfrak{P} of K lying over an odd prime p, each element $\alpha \in K$ can be expressed as a (possibly infinite) continued fraction

$$
\alpha=a_{0}+\frac{1}{a_{1}+\frac{1}{\ddots}}
$$

where a_{0}, a_{1}, \ldots are \mathfrak{Q}-adic integers for each prime ideal \mathfrak{Q} not lying over p. These CF-expansions can be computed by means of suitable algorithms, called $C F$-algorithms. It is natural to ask for which choices of K there exists a CF-algorithm such that the CF-expansion of each element in K is finite (CFF property). Previous works show that a major obstruction to the CFF property comes from the very structure of the class group of K. In this talk we circumvent this obstruction by giving a more general definition of CF-expansion: namely, we relax the requirement on a_{0}, a_{1}, \ldots by allowing a finite set of "extraneous" integers (i.e. other than p) to appear in their denominators. Our main result is that, for any K, a suitable choice of extraneous denominators ensures the CFF property for each prime p larger than some (effective) lower bound. Finally, we point out possible approaches to explicitly construct the corresponding CF-algorithms.

Joint work with L. Capuano, S. Checcoli and L. Terracini.

