Fuchs' question

F. g. abelian groups

Integral domains

Torsion-free rings

e rings Reduced Rings

The general case

Finitely generated abelian groups of units

Ilaria Del Corso

Dipartimento di Matematica Università di Pisa

Torino, 24-25 October 2019

I. Del Corso Finitely generated abelian groups of units

・ロト ・回ト ・ヨト ・ヨト

Э

Reduced Rings

イロン スポン スポン スポン 一部

The general case

Fuchs' questions

In Fuchs' book "Abelian Groups" (1960) the following question is posed (Problem 72)

Characterize the groups which are the (abelian) groups of all units in a commutative and associative ring with identity.

Fuchs' questions

In Fuchs' book "Abelian Groups" (1960) the following question is posed (Problem 72)

Characterize the groups which are the (abelian) groups of all units in a commutative and associative ring with identity.

The general problem appeared to be very difficult and it is still open.

イロト イポト イヨト イヨト 二日

Fuchs' questions

In Fuchs' book "Abelian Groups" (1960) the following question is posed (Problem 72)

Characterize the groups which are the (abelian) groups of all units in a commutative and associative ring with identity.

The general problem appeared to be very difficult and it is still open.

Partial approaches

- to restrict the class of rings
- to restrict the class of groups
- to restrict both

イロト イポト イヨト イヨト 二日

San

ee rings Reduced Rings

gs The general case

Units of number rings

Theorem (Dirichlet (1846))

Let *K* be a number field and let \mathcal{O}_K be its ring of integers. Let $[K : \mathbb{Q}] = r + 2s$ (here *r* is the number of real embeddings of *K* in $\overline{\mathbb{Q}}$ and 2*s* the number of non-real embeddings). Then

$$\mathcal{O}_K^* \cong T \times \mathbb{Z}^{r+s-1}$$

where T is the (cyclic) group of the roots of unity contained in K.

イロト イポト イヨト イヨト 二日

Units in group rings

Let R be a ring and let G be a group. The group ring RG is defined by

$$RG = \{\sum_{g \in G} \lambda_g g \mid \lambda_g \in R \text{ and } \lambda_g = 0 \text{ for almost all } g\}.$$

Theorem (Higman 1940) Let G be a finite abelian group of order n. Then

$$(\mathbb{Z}G)^* \cong \pm G \times \mathbb{Z}^{r_G}$$

where $r_G = \frac{1}{2}(n + 1 + c_2 - 2I)$, with $c_d = \#$ {cyclic subgroups of order d of G} and $I = \sum_{d|n} c_n$.

• Pearson and Schneider (1970):

Classification of the realizable cyclic groups.

- Chebolu and Lockridge (2015):
 - Classification of the realizable indecomposable abelian groups.
- idc, Dvornicich (2018)
 - Classification of the finite abelian groups which can be realized in the class of the integral domains, of the torsion-free rings and of the reduced rings.
 - necessary conditions for a f. ab. group to be realizable;
 - infinite new families of realizable/non-realizable finite abelian groups.
- idc (2019)
 - Classification of the finitely generated abelian groups which can be realized in the class of the integral domains, of the torsion-free rings and of the reduced rings.

• Pearson and Schneider (1970):

Classification of the realizable cyclic groups.

• Chebolu and Lockridge (2015):

Classification of the realizable indecomposable abelian groups.

- idc, Dvornicich (2018)
 - Classification of the finite abelian groups which can be realized in the class of the integral domains, of the torsion-free rings and of the reduced rings.
 - necessary conditions for a f. ab. group to be realizable;
 - infinite new families of realizable/non-realizable finite abelian groups.
- idc (2019)
 - Classification of the finitely generated abelian groups which can be realized in the class of the integral domains, of the torsion-free rings and of the reduced rings.

• Pearson and Schneider (1970):

Classification of the realizable cyclic groups.

• Chebolu and Lockridge (2015):

Classification of the realizable indecomposable abelian groups.

- idc, Dvornicich (2018)
 - Classification of the finite abelian groups which can be realized in the class of the integral domains, of the torsion-free rings and of the reduced rings.
 - necessary conditions for a f. ab. group to be realizable;
 - infinite new families of realizable/non-realizable finite abelian groups.
- idc (2019)
 - Classification of the finitely generated abelian groups which can be realized in the class of the integral domains, of the torsion-free rings and of the reduced rings.

• Pearson and Schneider (1970):

Classification of the realizable cyclic groups.

• Chebolu and Lockridge (2015):

Classification of the realizable indecomposable abelian groups.

- idc, Dvornicich (2018)
 - Classification of the finite abelian groups which can be realized in the class of the integral domains, of the torsion-free rings and of the reduced rings.
 - necessary conditions for a f. ab. group to be realizable;
 - infinite new families of realizable/non-realizable finite abelian groups.
- idc (2019)
 - Classification of the finitely generated abelian groups which can be realized in the class of the integral domains, of the torsion-free rings and of the reduced rings.

e rings Reduced Rings

The general case

Finitely generated abelian groups

Fuchs' question for finitely generated abelian groups A ring with 1, A^* group of units of A. Assume that A^* is finitely generated and abelian

 $A^*\cong (A^*)_{tors} imes \mathbb{Z}^{r_A}$

Problem: what groups arise?

- T finite abelian group: $\exists A \in C$ such that $(A^*)_{tors} \cong T$?
- If $(A^*)_{tors} \cong T$ what can we say on $r_A = \operatorname{rank}(A^*)$?

I. Del Corso Finitely generated abelian groups of units

(日) (四) (王) (王) (王)

na a

e rings Reduced Rings

The general case

Finitely generated abelian groups

Fuchs' question for finitely generated abelian groups A ring with 1, A^* group of units of A. Assume that A^* is finitely generated and abelian

 $A^*\cong (A^*)_{tors} imes \mathbb{Z}^{r_A}$

Problem: what groups arise?

- T finite abelian group: $\exists A \in C$ such that $(A^*)_{tors} \cong T$?
- If $(A^*)_{tors} \cong T$ what can we say on $r_A = \operatorname{rank}(A^*)$?

e rings Reduced Rings

The general case

Finitely generated abelian groups

Fuchs' question for finitely generated abelian groups A ring with 1, A^* group of units of A. Assume that A^* is finitely generated and abelian

 $A^* \cong (A^*)_{tors} imes \mathbb{Z}^{r_A}$

Problem: what groups arise?

- T finite abelian group: $\exists A \in C$ such that $(A^*)_{tors} \cong T$?
- If $(A^*)_{tors} \cong T$ what can we say on $r_A = \operatorname{rank}(A^*)$?

The problem

Reduction: Let $A_0(=\mathbb{Z} \text{ or } \mathbb{Z}/n\mathbb{Z})$ be the fundamental subring of A and consider the ring $A_0[(A^*)_{tors}]$. Then

$$(A^*)_{tors} = (A_0[(A^*)_{tors}])^*_{tors}$$

and

$$r_A \geq r_{A_0[(A^*)_{tors}]}.$$

So, up to changing $A \leftrightarrow A_0[(A^*)_{tors}]$, we can restrict to study: commutative rings which are finitely gen. and integral over A_0 .

Integral domains

Theorem (idc 2019)

The finitely generated abelian groups that occur as groups of units of an integral domain are: i) $\operatorname{char}(A) = p$: all groups of the form $\mathbb{F}_{p^n}^* \times \mathbb{Z}^r$ with $n \ge 1$ and $r \ge 0$; ii) $\operatorname{char}(A) = 0$: all groups of the form $C_{2n} \times \mathbb{Z}^r$, with $n \ge 1$, $r \ge \frac{\phi(2n)}{2} - 1$.

Corollary

The finite abelian groups that occur as groups of units of an integral domain A are: i) the multiplicative groups of the finite fields if char(A) > 0; ii) the cyclic groups of order 2,4, or 6 if char(A) = 0.

I. Del Corso Finitely generated abelian groups of units

90

Integral domains

Theorem (idc 2019)

The finitely generated abelian groups that occur as groups of units of an integral domain are: i) char(A) = p: all groups of the form $\mathbb{F}_{p^n}^* \times \mathbb{Z}^r$ with $n \ge 1$ and $r \ge 0$; ii) char(A) = 0: all groups of the form $C_{2n} \times \mathbb{Z}^r$, with $n \ge 1$, $r \ge \frac{\phi(2n)}{2} - 1$.

Corollary

The finite abelian groups that occur as groups of units of an integral domain A are: i) the multiplicative groups of the finite fields if char(A) > 0; ii) the cyclic groups of order 2,4, or 6 if char(A) = 0.

・ロト ・回ト ・ヨト ・ヨト

Torsion-free rings

A is torsion-free if 0 is the only element of finite additive order. In this case, char(A) = 0. Example: If R is a torsion-free ring and G is a group, then RG is

torsion-free.

Theorem (idc 2019)

Let T be a finite abelian group of even order. Then there exists an explicit constant g(T) such that the following holds:

$T \times \mathbb{Z}^r$

is the group of units of a torsion-free ring if and only if $r \ge g(T)$.

Torsion-free rings

A is torsion-free if 0 is the only element of finite additive order. In this case, char(A) = 0. Example: If R is a torsion-free ring and G is a group, then RG is torsion-free.

Theorem (idc 2019)

Let T be a finite abelian group of even order. Then there exists an explicit constant g(T) such that the following holds:

$T \times \mathbb{Z}^r$

is the group of units of a torsion-free ring if and only if $r \ge g(T)$.

$$T \cong \prod_{\iota=1}^{s} C_{p_{\iota}^{a_{\iota}}} \times \prod_{i=1}^{\rho} C_{2^{\epsilon_{i}}} \times C_{2^{\epsilon}}^{\sigma}$$

where $s, \rho \geq 0, \sigma \geq 1$ and

- for all $\iota = 1, \ldots, s$ the p_{ι} 's are odd prime numbers, not necessarily distinct, and $a_{L} > 1$;

-
$$\epsilon = \epsilon(T) \ge 1$$
 and $\epsilon_i > \epsilon$ for all $i = 1, \dots, \rho$.

$$g(T) = \sum_{\iota=1}^{s} (\frac{\phi(2^{\epsilon} p_{\iota}^{a_{\iota}})}{2} - 1) + \sum_{i=1}^{\rho} (\frac{\phi(2^{\epsilon_{i}})}{2} - 1) + c(T)$$

where

$$c(T) = \begin{cases} (\sigma - s)(\frac{\phi(2^{\epsilon})}{2} - 1) & \text{for } s < \sigma \text{ and } \epsilon > 1 \\ 0 & \text{for } s_0 \le \sigma \le s \text{ or } \epsilon = 1 \\ \left\lceil \frac{\phi(2^{\epsilon})}{2} - 1 \right\rceil & \text{for } \sigma < s_0 \end{cases}$$

where $s_0 = \#\{p_1, ..., p_s\}$.

I. Del Corso Finitely generated abelian groups of units

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ - 日 ・

na a

Sketch of the proof:

- We can assume assume A of the form $\mathbb{Z}[(A^*)_{tors}]$.

$$\mathcal{M} = \prod_{i=1}^{\tau} \mathbb{Z}[\zeta_{n_i}].$$

I. Del Corso Finitely generated abelian groups of units

・ロト ・回ト ・ヨト ・ヨト

Sketch of the proof:

- We can assume assume A of the form $\mathbb{Z}[(A^*)_{tors}]$.
- **2** $\mathbb{Q} \otimes_{\mathbb{Z}} A$ is semisimple and is a "cyclotomic \mathbb{Q} -algebra", namely

$$\mathbb{Q}\otimes_{\mathbb{Z}}A\cong\prod_{i=1}^t\mathbb{Q}(\zeta_{n_i}).$$

Since A is torsion-free, we can reduce to study orders in its maximal order

$$\mathcal{M}=\prod_{i=1}^{l}\mathbb{Z}[\zeta_{n_i}].$$

If A is an order of \mathcal{M} then $\operatorname{rank}(A^*) = \operatorname{rank}(\mathcal{M}^*)$.

Sketch of the proof:

- We can assume assume A of the form $\mathbb{Z}[(A^*)_{tors}]$.
- **2** $\mathbb{Q} \otimes_{\mathbb{Z}} A$ is semisimple and is a "cyclotomic \mathbb{Q} -algebra", namely

$$\mathbb{Q}\otimes_{\mathbb{Z}}A\cong\prod_{i=1}^t\mathbb{Q}(\zeta_{n_i}).$$

Since A is torsion-free, we can reduce to study orders in its maximal order

$$\mathcal{M}=\prod_{i=1}^{l}\mathbb{Z}[\zeta_{n_i}].$$

• If A is an order of \mathcal{M} then $\operatorname{rank}(A^*) = \operatorname{rank}(\mathcal{M}^*)$.

イロト イポト イヨト イヨト 二日

San

 $(A^*)_{tors} \cong T \Longrightarrow \operatorname{rank}(A^*) \ge g(T).$ $\forall r \ge g(T) \Longrightarrow \exists A \text{ such that } A^* \cong T \times \mathbb{Z}^r.$

• If $A \subseteq M = \prod_{i=1}^{n} \mathbb{Z}[\zeta_{n}]$ then M is T-admissible. • for all T-admissible maximal orders $\operatorname{rank}(M^{2}) \ge \varepsilon(T)$. • $\operatorname{Let} M_{0,T} = \prod_{i=1}^{n} \mathbb{Z}[\zeta_{2^{i}} g_{i}] \ge \prod_{i=1}^{n} \mathbb{Z}[\zeta_{2^{i}}] \ge \mathbb{Z}[\zeta_{2^{i}} g_{i}] \ge (T)$. is T-admissible and

I. Del Corso Finitely generated abelian groups of units

・ロト ・回ト ・ヨト ・ヨト

E

We say that $\mathcal{M} = \prod_{i=1}^{t} \mathbb{Z}[\zeta_{n_i}]$ is *T*-admissible if

- $T \leq \mathcal{M}^*$ (arithmetic conditions on the n_i 's)
- $2^{\epsilon} \mid n_i$ for all i.
 - If $A \subseteq \mathcal{M} = \prod_{i=1}^{t} \mathbb{Z}[\zeta_{n_i}]$ then \mathcal{M} is \mathcal{T} -admissible.
 - for all *T*-admissible maximal orders rank(*M**) ≥ g(*T*).
 10.0 *M*₀, *T* = ∏¹_{i=1} Z[G₂, p^{*}_i] ≥ ∏¹_{i=1} Z[G₂,] ≤ Z[G₂]^{max[σ = np}_i] ≥ [1ⁱ⁼¹Z[G₂, p^{*}_i] ≤ [1ⁱ⁼¹Z[G₂, p^{*}_i]).

$$\inf_{\mathbf{x} \in \mathcal{T}} \max(\mathcal{M}_{0,r}) = \left\{ \begin{array}{l} \mathbf{x}(\mathcal{T}) \\ \mathbf{x}(\mathcal{T}) = \left\{ \begin{array}{l} \mathbf{x}(\mathcal{T}) \\ \mathbf{x}(\mathcal{T}) = \left[\begin{array}{l} \mathbf{x}(\mathcal{T}) \\ \mathbf{x}(\mathcal{T}) \\ \mathbf{x}(\mathcal{T}) \end{array} \right] \right\} \quad \text{for } r < s_0$$

I. Del Corso Finitely generated abelian groups of units

・ロト ・回ト ・ヨト ・ヨト

Э

We say that $\mathcal{M} = \prod_{i=1}^{t} \mathbb{Z}[\zeta_{n_i}]$ is *T*-admissible if

- $T \leq \mathcal{M}^*$ (arithmetic conditions on the n_i 's)
- $2^{\epsilon} \mid n_i$ for all i.

We can show that:

- If $A \subseteq \mathcal{M} = \prod_{i=1}^{t} \mathbb{Z}[\zeta_{n_i}]$ then \mathcal{M} is *T*-admissible.
- for all *T*-admissible maximal orders $\operatorname{rank}(\mathcal{M}^*) \geq g(T)$,

$$\mathrm{rank}(\mathcal{M}^*_{0,\mathcal{T}}) = egin{cases} g(\mathcal{T}) & ext{for } \sigma \geq s_0 \ g(\mathcal{T}) - \left\lceil rac{\phi(2^\epsilon)}{2} - 1
ight
ceil & ext{for } \sigma < s_0. \end{cases}$$

I. Del Corso Finitely generated abelian groups of units

San

We say that $\mathcal{M} = \prod_{i=1}^{t} \mathbb{Z}[\zeta_{n_i}]$ is *T*-admissible if

- $T \leq \mathcal{M}^*$ (arithmetic conditions on the n_i 's)
- $2^{\epsilon} \mid n_i$ for all i.

We can show that:

- If $A \subseteq \mathcal{M} = \prod_{i=1}^{t} \mathbb{Z}[\zeta_{n_i}]$ then \mathcal{M} is *T*-admissible.
- for all *T*-admissible maximal orders $\operatorname{rank}(\mathcal{M}^*) \ge g(T)$,
- but $\mathcal{M}_{0,\mathcal{T}} = \prod_{i=1}^{s} \mathbb{Z}[\zeta_{2^{\epsilon}\rho_{i}^{a_{i}}}] \times \prod_{t=1}^{\rho} \mathbb{Z}[\zeta_{2^{\epsilon_{t}}}] \times \mathbb{Z}[\zeta_{2^{\epsilon}}]^{\max\{\sigma-s,0\}}$ is \mathcal{T} -admissible and

$$\operatorname{rank}(\mathcal{M}_{0,T}^*) = \begin{cases} g(T) & \text{for } \sigma \ge s_0 \\ g(T) - \left\lceil \frac{\phi(2^{\epsilon})}{2} - 1 \right\rceil & \text{for } \sigma < s_0. \end{cases}$$

I. Del Corso Finitely generated abelian groups of units

San

We say that $\mathcal{M} = \prod_{i=1}^{t} \mathbb{Z}[\zeta_{n_i}]$ is *T*-admissible if

- $T \leq \mathcal{M}^*$ (arithmetic conditions on the n_i 's)
- $2^{\epsilon} \mid n_i$ for all i.

We can show that:

- If $A \subseteq \mathcal{M} = \prod_{i=1}^{t} \mathbb{Z}[\zeta_{n_i}]$ then \mathcal{M} is *T*-admissible.
- for all *T*-admissible maximal orders $\operatorname{rank}(\mathcal{M}^*) \ge g(T)$,
- but $\mathcal{M}_{0,\mathcal{T}} = \prod_{i=1}^{s} \mathbb{Z}[\zeta_{2^{\epsilon}\rho_i^{a_i}}] \times \prod_{\iota=1}^{\rho} \mathbb{Z}[\zeta_{2^{\epsilon_{\iota}}}] \times \mathbb{Z}[\zeta_{2^{\epsilon}}]^{\max\{\sigma-s,0\}}$ is \mathcal{T} -admissible and

$$\operatorname{rank}(\mathcal{M}^*_{0,T}) = egin{cases} g(T) & ext{for } \sigma \geq s_0 \ g(T) - \left\lceil rac{\phi(2^\epsilon)}{2} - 1
ight
ceil & ext{for } \sigma < s_0. \end{cases}$$

Sar

イロン スポン スポン スポン 一部

$$(A^*)_{tors} \cong T \Longrightarrow \operatorname{rank}(A^*) \ge g(T).$$

We say that $\mathcal{M} = \prod_{i=1}^{t} \mathbb{Z}[\zeta_{n_i}]$ is *T*-admissible if

- $T \leq \mathcal{M}^*$ (arithmetic conditions on the n_i 's)
- $2^{\epsilon} \mid n_i$ for all i.

We can show that:

- If $A \subseteq \mathcal{M} = \prod_{i=1}^{t} \mathbb{Z}[\zeta_{n_i}]$ then \mathcal{M} is *T*-admissible.
- for all but one T-admissible maximal orders $\operatorname{rank}(\mathcal{M}^*) \geq g(\mathcal{T})$, so....we are almost done
- but $\mathcal{M}_{0,T} = \prod_{i=1}^{s} \mathbb{Z}[\zeta_{2^{\epsilon_{D}},i}] \times \prod_{\iota=1}^{\rho} \mathbb{Z}[\zeta_{2^{\epsilon_{\iota}}}] \times \mathbb{Z}[\zeta_{2^{\epsilon}}]^{\max\{\sigma-s,0\}}$

$$\operatorname{rank}(\mathcal{M}_{0,T}^{*}) = \begin{cases} g(T) & \text{for } \sigma \geq s_{0} \\ g(T) - \left\lceil \frac{\phi(2^{\epsilon})}{2} - 1 \right\rceil & \text{for } \sigma < s_{0} \end{cases}$$

$$(A^*)_{tors} \cong T \Longrightarrow \operatorname{rank}(A^*) \ge g(T).$$

We say that $\mathcal{M} = \prod_{i=1}^{t} \mathbb{Z}[\zeta_{n_i}]$ is *T*-admissible if

- $T \leq \mathcal{M}^*$ (arithmetic conditions on the n_i 's)
- $2^{\epsilon} \mid n_i$ for all i.

We can show that:

- If $A \subseteq \mathcal{M} = \prod_{i=1}^{t} \mathbb{Z}[\zeta_{n_i}]$ then \mathcal{M} is *T*-admissible.
- for all but one *T*-admissible maximal orders $\operatorname{rank}(\mathcal{M}^*) \geq g(\mathcal{T})$, so....we are almost done
- but $\mathcal{M}_{0,\mathcal{T}} = \prod_{i=1}^{s} \mathbb{Z}[\zeta_{2^{\epsilon} p_i^{\mathfrak{a}_i}}] \times \prod_{\ell=1}^{\rho} \mathbb{Z}[\zeta_{2^{\epsilon_\ell}}] \times \mathbb{Z}[\zeta_{2^{\epsilon}}]^{\max\{\sigma-s,0\}}$ is T-admissible and

$$\operatorname{rank}(\mathcal{M}_{0,T}^*) = \begin{cases} g(T) & \text{for } \sigma \geq s_0 \\ g(T) - \left\lceil \frac{\phi(2^{\epsilon})}{2} - 1 \right\rceil & \text{for } \sigma < s_0. \end{cases}$$

I. Del Corso

Finitely generated abelian groups of units

イロト イポト イヨト イヨト 二日

The case $\sigma < s_0$

In this case each order $\mathcal{O} \subseteq \mathcal{M}_{0,T}$ with $T \leq (\mathcal{O}^*)_{tors}$ contains too many elements of order 2, so $T \leq (\mathcal{O}^*)_{tors}$.

Example: Let $T = C_2 \times C_p \times C_q$ where $p \neq q$ are odd primes. Then

$$\mathcal{M}_{0,T} = \mathbb{Z}[\zeta_p] \times \mathbb{Z}[\zeta_q]$$

and

$$(\mathcal{M}^*_{0,T})_{tors} \cong C_2 \times T$$

If $T \leq (\mathcal{O}^*)_{tors}$, then all the p and q elements of $(\mathcal{M}^*_{0,T})_{tors}$ belongs to T, so $\alpha = (\zeta_p, \zeta_q) \in \mathcal{O}$. Now

$$\mathcal{O} \supseteq \mathbb{Z}[\alpha] \cong \frac{\mathbb{Z}[x]}{(\Phi_{\rho}(x)\Phi_{q}(x))} \cong \mathbb{Z}[\zeta_{\rho}] \times \mathbb{Z}[\zeta_{q}] = \mathcal{M}_{0,T},$$

hence $\mathcal{O} = \mathcal{M}_{0,T}$ and $(\mathcal{O}^*)_{tors} \cong C_2 \times T$.

I. Del Corso

Finitely generated abelian groups of units

Reduced Rings The general case

Construction of A with $A^* \cong T \times \mathbb{Z}^{g(T)}$

Let

then

$$\mathcal{M}_{\mathcal{T}} = \begin{cases} \mathcal{M}_{0,\mathcal{T}} & \text{for } \sigma \geq s_0\\ \mathcal{M}_{0,\mathcal{T}} \times \mathbb{Z}[\zeta_{2^{\epsilon}}] & \text{for } \sigma < s_0, \end{cases}$$
$$\operatorname{rank}(\mathcal{M}_{\mathcal{T}}) = g(\mathcal{T}) \text{ and } (\mathcal{M}_{\mathcal{T}}^*)_{tors} \cong \mathcal{T} \times C_{2^{\epsilon}}.$$

Claim: we can construct A inside \mathcal{M}_T .

I. Del Corso Finitely generated abelian groups of units

Fuchs' question F. g. abelian groups Integral domains Torsion-free rings Reduced Rings The general case

Example: Let $T = C_2 \times C_p \times C_q$ where $p \neq q$ are odd primes. $\mathcal{M}_T = \mathcal{M}_{0,T} \times \mathbb{Z} = \mathbb{Z}[\zeta_p] \times \mathbb{Z}[\zeta_q] \times \mathbb{Z}$ $(\mathcal{M}_T^*)_{tors} \cong C_2^2 \times T$ Let $\alpha = (\zeta_p, 1, 1), \beta = (1, \zeta_q, 1)$ and put $A = \mathbb{Z}[\alpha, \beta]$.

I. Del Corso Finitely generated abelian groups of units

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Fuchs' question F. g. abelian groups Integral domains Torsion-free rings Reduced Rings The general case

Example: Let $T = C_2 \times C_p \times C_q$ where $p \neq q$ are odd primes. $\mathcal{M}_T = \mathcal{M}_{0,T} \times \mathbb{Z} = \mathbb{Z}[\zeta_p] \times \mathbb{Z}[\zeta_q] \times \mathbb{Z}$ $(\mathcal{M}_T^*)_{tors} \cong C_2^2 \times T$ Let $\alpha = (\zeta_p, 1, 1), \beta = (1, \zeta_q, 1)$ and put $A = \mathbb{Z}[\alpha, \beta]$. A is an order of \mathcal{M}_T and $T \leq (A^*)_{tors}$.

イロト 不得 トイラト イラト ニラー

na a

Fuchs' question F. g. abelian groups Integral domains Torsion-free rings Reduced Rings The general case

Example: Let $T = C_2 \times C_p \times C_q$ where $p \neq q$ are odd primes. $\mathcal{M}_T = \mathcal{M}_{0,T} \times \mathbb{Z} = \mathbb{Z}[\zeta_p] \times \mathbb{Z}[\zeta_q] \times \mathbb{Z}$ $(\mathcal{M}_T^*)_{tors} \cong C_2^2 \times T$ Let $\alpha = (\zeta_p, 1, 1), \beta = (1, \zeta_q, 1)$ and put $A = \mathbb{Z}[\alpha, \beta]$.

A is an order of \mathcal{M}_T and $T \leq (A^*)_{tors}$. Let $u = (u_1, u_2, u_3) \in A$ with $u^2 = 1$:

イロト イポト イヨト イヨト 二日

Example: Let $T = C_2 \times C_p \times C_q$ where $p \neq q$ are odd primes.

$$\mathcal{M}_{\mathcal{T}} = \mathcal{M}_{0,\mathcal{T}} imes \mathbb{Z} = \mathbb{Z}[\zeta_{\rho}] imes \mathbb{Z}[\zeta_{q}] imes \mathbb{Z}$$

$$(\mathcal{M}_T^*)_{tors}\cong C_2^2 imes T$$

Let $\alpha = (\zeta_p, 1, 1), \beta = (1, \zeta_q, 1)$ and put $A = \mathbb{Z}[\alpha, \beta]$.

A is an order of \mathcal{M}_T and $T \leq (A^*)_{tors}$.

Let $u = (u_1, u_2, u_3) \in A$ with $u^2 = 1$: then (u_1, u_3) is a unit of exponent 2 of the ring $\mathbb{Z}[(\zeta_p, 1)]$ and one can show that

$$(\mathbb{Z}[(\zeta_p,1)]^*)_{tors}\cong C_{2p}$$

so $u_1 = u_3 = \pm 1$.

イロト 不得 トイラト イラト ニラー

San

Example: Let $T = C_2 \times C_p \times C_q$ where $p \neq q$ are odd primes.

$$\mathcal{M}_{\mathcal{T}} = \mathcal{M}_{0,\mathcal{T}} \times \mathbb{Z} = \mathbb{Z}[\zeta_{p}] \times \mathbb{Z}[\zeta_{q}] \times \mathbb{Z}$$

$$(\mathcal{M}_T^*)_{tors} \cong C_2^2 \times T$$

Let $\alpha = (\zeta_p, 1, 1), \beta = (1, \zeta_q, 1)$ and put $A = \mathbb{Z}[\alpha, \beta]$.

A is an order of \mathcal{M}_T and $T \leq (A^*)_{tors}$. Let $u = (u_1, u_2, u_3) \in A$ with $u^2 = 1$: then (u_1, u_3) is a unit of exponent 2 of the ring $\mathbb{Z}[(\zeta_p, 1)]$ and one can show that

 $(\mathbb{Z}[(\zeta_p, 1)]^*)_{tors} \cong C_{2p}$

so $u_1=u_3=\pm 1.$ Analogously, $u_2=u_3=\pm 1$, hence u=(1,1,1) or u=(-1,-1,-1).

Corollary (idc, RD)

The finite abelian groups which are the group of units of a torsion-free ring A, are all those of the form

$$C_2^a \times C_4^b \times C_3^c$$

where $a, b, c \in \mathbb{N}$, $a + b \ge 1$ and $a \ge 1$ if $c \ge 1$. In particular, the possible values of $|A^*|$ are the integers $2^d 3^c$ with d > 1.

イロト イポト イヨト イヨト

3

Reduced rings

Theorem (idc 2019)

The finitely generated abelian groups that occur as groups of units of a reduced ring are those of the form

$$\prod_{i=1}^k \mathbb{F}^*_{p_i^{n_i}} \times T \times \mathbb{Z}^g$$

where $k, n_1, ..., n_k$ are positive integers, $\{p_1, ..., p_k\}$ are not necessarily distinct primes, T is any finite abelian group of even order and $g \ge g(T)$.

・ロト ・回ト ・ヨト ・ヨト

The general case?

If A is any ring and $\mathfrak N$ denotes its radical, then we can try to study A^* via the exact sequence

$$1
ightarrow 1 + \mathfrak{N}
ightarrow A^*
ightarrow (A/\mathfrak{N})^*
ightarrow 1$$

In two joint papers with R. Dvornicich we used this method to derive information on realizable finite abelian groups without restriction on the ring.

・ロット (日) ・ (日) ・ (日)

3

Bibliorgaphy

- DEL CORSO ILARIA, Finitely generated abelian groups of units, J. London Math. Soc., (2019) doi:10.1112/jlms.12268.
- DEL CORSO ILARIA, DVORNICICH ROBERTO, On Fuchs' Problem about the group of units of a ring, Bull. London Math. Soc., 50 (2018,) 274-292.
- DEL CORSO ILARIA, DVORNICICH ROBERTO, Finite groups of units of finite characteristic rings, Annali di Matematica Pura ed Applicata, 197(3) (2018), 661-671.

イロト イポト イヨト イヨト

3

Fuchs' question

F. g. abelian groups

Integral domains

Torsion-free rings

rings Reduced Rings

The general case

Grazie per l'attenzione!

イロト イヨト イヨト イヨト

I. Del Corso Finitely generated abelian groups of units