Integral Points on Surfaces - Some open problems and recent results

Pietro Corvaja - Università di Udine

4th Number Theory Meeting
Turin, October 2019

Diophantine equations:

Diophantine equations:

$$
\left\{\begin{array}{ccc}
f_{1}\left(x_{1}, \ldots, x_{N}\right) & = & 0 \\
\vdots & \vdots & \\
f_{k}\left(x_{1}, \ldots, x_{N}\right) & = & 0
\end{array}\right.
$$

Diophantine equations:

$$
\left\{\begin{array}{ccc}
f_{1}\left(x_{1}, \ldots, x_{N}\right) & = & 0 \\
\vdots & \vdots & \\
f_{k}\left(x_{1}, \ldots, x_{N}\right) & = & 0
\end{array}\right.
$$

to be solved in integers $\mathbf{x}=\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{Z}^{N}$

Diophantine equations:

$$
\left\{\begin{array}{ccc}
f_{1}\left(x_{1}, \ldots, x_{N}\right) & = & 0 \\
\vdots & \vdots & \\
f_{k}\left(x_{1}, \ldots, x_{N}\right) & = & 0
\end{array}\right.
$$

to be solved in integers $\mathbf{x}=\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{Z}^{N}$ or in rationals $\mathbf{x} \in \mathbb{Q}^{N}$.

Diophantine equations:

$$
\left\{\begin{array}{ccc}
f_{1}\left(x_{1}, \ldots, x_{N}\right) & = & 0 \\
\vdots & \vdots & \\
f_{k}\left(x_{1}, \ldots, x_{N}\right) & = & 0
\end{array}\right.
$$

to be solved in integers $\mathbf{x}=\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{Z}^{N}$
or in rationals $\mathbf{x} \in \mathbb{Q}^{N}$.
The complex solutions $\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{C}^{N}$ form an algebraic variety.

An unsolved problem on intergral points on surfaces:

An unsolved problem on intergral points on surfaces:
Does the Diophantine equation

$$
x^{3}+y^{3}+z^{3}=33
$$

admit an integral solution?

An unsolved problem on intergral points on surfaces:
Does the Diophantine equation

$$
x^{3}+y^{3}+z^{3}=33
$$

admit an integral solution?

An unsolved problem on intergral points on surfaces:
Does the Diophantine equation

$$
x^{3}+y^{3}+z^{3}=33
$$

admit an integral solution?

YES:

$(x, y, z)=(8866128975287528,8778405442862239,2736111468807040)$

New equation:

$$
x^{3}+y^{3}+z^{3}=42
$$

New equation:

$$
x^{3}+y^{3}+z^{3}=42
$$

Solved in September 2019.

New equation:

$$
x^{3}+y^{3}+z^{3}=42
$$

Solved in September 2019.
Replace 42 by 114: still unsolved.

All the above equations admit a Zariski-dense set of rational solutions.

Taxi-cab numbers:

Taxi-cab numbers:
Ramanujan observed that 1729 is the minimal integer which can be written as a sum of two cubes into two essentially different ways:

Taxi-cab numbers:
Ramanujan observed that 1729 is the minimal integer which can be written as a sum of two cubes into two essentially different ways:

$$
1729=12^{3}+1^{3}
$$

Taxi-cab numbers:
Ramanujan observed that 1729 is the minimal integer which can be written as a sum of two cubes into two essentially different ways:

$$
1729=12^{3}+1^{3}=9^{3}+10^{3} .
$$

Taxi-cab numbers:
Ramanujan observed that 1729 is the minimal integer which can be written as a sum of two cubes into two essentially different ways:

$$
1729=12^{3}+1^{3}=9^{3}+10^{3} .
$$

Consider the Diophantine equation:

$$
X^{3}+Y^{3}=Z^{3}+W^{3}
$$

Taxi-cab numbers:
Ramanujan observed that 1729 is the minimal integer which can be written as a sum of two cubes into two essentially different ways:

$$
1729=12^{3}+1^{3}=9^{3}+10^{3}
$$

Consider the Diophantine equation:

$$
X^{3}+Y^{3}=Z^{3}+W^{3}
$$

Its complex solutions form a (rational) surface in \mathbb{P}_{3}.

Taxi-cab numbers:
Ramanujan observed that 1729 is the minimal integer which can be written as a sum of two cubes into two essentially different ways:

$$
1729=12^{3}+1^{3}=9^{3}+10^{3}
$$

Consider the Diophantine equation:

$$
X^{3}+Y^{3}=Z^{3}+W^{3}
$$

Its complex solutions form a (rational) surface in \mathbb{P}_{3}. Its rational points, outside the trivial lines

$$
\left\{\begin{array} { l }
{ X = Z } \\
{ Y = W }
\end{array} \quad \left\{\begin{array} { l }
{ X = W } \\
{ Y = Z }
\end{array} \quad \left\{\begin{array}{l}
X=-Y \\
Z=-W
\end{array}\right.\right.\right.
$$

Taxi-cab numbers:
Ramanujan observed that 1729 is the minimal integer which can be written as a sum of two cubes into two essentially different ways:

$$
1729=12^{3}+1^{3}=9^{3}+10^{3}
$$

Consider the Diophantine equation:

$$
X^{3}+Y^{3}=Z^{3}+W^{3}
$$

Its complex solutions form a (rational) surface in \mathbb{P}_{3}. Its rational points, outside the trivial lines

$$
\left\{\begin{array} { l }
{ X = Z } \\
{ Y = W }
\end{array} \quad \left\{\begin{array} { l }
{ X = W } \\
{ Y = }
\end{array} \quad \left\{\begin{array}{l}
X=-Y \\
Z=-W
\end{array}\right.\right.\right.
$$

give rise to non-zero integers which can be written as sums of two cubes into two different ways.

Taxi-cab numbers:
Ramanujan observed that 1729 is the minimal integer which can be written as a sum of two cubes into two essentially different ways:

$$
1729=12^{3}+1^{3}=9^{3}+10^{3}
$$

Consider the Diophantine equation:

$$
X^{3}+Y^{3}=Z^{3}+W^{3}
$$

Its complex solutions form a (rational) surface in \mathbb{P}_{3}. Its rational points, outside the trivial lines

$$
\left\{\begin{array} { l }
{ X = Z } \\
{ Y = W }
\end{array} \quad \left\{\begin{array} { l }
{ X = W } \\
{ Y = }
\end{array} \quad \left\{\begin{array}{l}
X=-Y \\
Z=-W
\end{array}\right.\right.\right.
$$

give rise to non-zero integers which can be written as sums of two cubes into two different ways. There is a Zariski-dense set of rational points.

Constructing many rational points on cubic surfaces:

Constructing many rational points on cubic surfaces:

- take one rational point

Constructing many rational points on cubic surfaces:

- take one rational point (provided there are any)

Constructing many rational points on cubic surfaces:

- take one rational point (provided there are any)
- cut the surface with the tangent plane at that point, obtaining a singular plane cubic curve

Constructing many rational points on cubic surfaces:

- take one rational point (provided there are any)
- cut the surface with the tangent plane at that point, obtaining a singular plane cubic curve
- parametrize the cubic curve via the pencil of tangent lines passing through the point

Constructing many rational points on cubic surfaces:

- take one rational point (provided there are any)
- cut the surface with the tangent plane at that point, obtaining a singular plane cubic curve
- parametrize the cubic curve via the pencil of tangent lines passing through the point
- repeat the process with any of the infinitely many points so obtained.

Constructing many rational points on cubic surfaces:

- take one rational point (provided there are any)
- cut the surface with the tangent plane at that point, obtaining a singular plane cubic curve
- parametrize the cubic curve via the pencil of tangent lines passing through the point
- repeat the process with any of the infinitely many points so obtained.

Applying this method to the taxi-cab surface, starting e.g. from the Ramanujan point ($1: 12: 9: 10$), one obtains infinitely many taxi-cab numbers.

Taxi-cab numbers of higher degree.

Taxi-cab numbers of higher degree.
Are there numbers expressible as sums of two fourth powers in two different ways?

Taxi-cab numbers of higher degree.
Are there numbers expressible as sums of two fourth powers in two different ways?
Yes:

$$
67^{4}+133^{4}=59^{4}+158^{4}
$$

Taxi-cab numbers of higher degree.
Are there numbers expressible as sums of two fourth powers in two different ways?
Yes:

$$
67^{4}+133^{4}=59^{4}+158^{4}
$$

Consider the surface $S \subset \mathbb{P}_{3}$ of equation

Taxi-cab numbers of higher degree.
Are there numbers expressible as sums of two fourth powers in two different ways?
Yes:

$$
67^{4}+133^{4}=59^{4}+158^{4}
$$

Consider the surface $S \subset \mathbb{P}_{3}$ of equation

$$
X^{4}+Y^{4}=Z^{4}+W^{4}
$$

Taxi-cab numbers of higher degree.
Are there numbers expressible as sums of two fourth powers in two different ways?
Yes:

$$
67^{4}+133^{4}=59^{4}+158^{4}
$$

Consider the surface $S \subset \mathbb{P}_{3}$ of equation

$$
X^{4}+Y^{4}=Z^{4}+W^{4}
$$

It is a K 3 surface.

Taxi-cab numbers of higher degree.
Are there numbers expressible as sums of two fourth powers in two different ways?
Yes:

$$
67^{4}+133^{4}=59^{4}+158^{4}
$$

Consider the surface $S \subset \mathbb{P}_{3}$ of equation

$$
X^{4}+Y^{4}=Z^{4}+W^{4}
$$

It is a K3 surface. Its rational points (outside the 'trivial lines') give rise to taxi-cab numbers of the fourth degree.

Taxi-cab numbers of higher degree.
Are there numbers expressible as sums of two fourth powers in two different ways?
Yes:

$$
67^{4}+133^{4}=59^{4}+158^{4}
$$

Consider the surface $S \subset \mathbb{P}_{3}$ of equation

$$
X^{4}+Y^{4}=Z^{4}+W^{4}
$$

It is a K3 surface. Its rational points (outside the 'trivial lines') give rise to taxi-cab numbers of the fourth degree.
Let r, s_{0}, s_{1} be the lines

$$
r:\left\{\begin{array}{l}
X=Z \\
Y=W
\end{array} \quad s_{0}:\left\{\begin{array}{l}
X=-W \\
Y=
\end{array} \quad s_{1}:\left\{\begin{array}{lll}
X & = & W \\
Y & = & -Z
\end{array}\right.\right.\right.
$$

Note that $r \cap s_{0}=r \cap s_{1}=\emptyset$.

Note that $r \cap s_{0}=r \cap s_{1}=\emptyset$.
Consider the pencil of planes $\Pi_{l}, I \in \mathbb{P}_{1}$, containing r :

Note that $r \cap s_{0}=r \cap s_{1}=\emptyset$.
Consider the pencil of planes $\Pi_{l}, I \in \mathbb{P}_{1}$, containing r : each such plane cuts S on the line r plus a (generically smooth) plane cubic curve E_{l};

Note that $r \cap s_{0}=r \cap s_{1}=\emptyset$.
Consider the pencil of planes $\Pi_{I}, I \in \mathbb{P}_{1}$, containing r : each such plane cuts S on the line r plus a (generically smooth) plane cubic curve E_{l}; the point $P_{0}=s_{0} \cap \Pi_{l}$ lies in E_{l},

Note that $r \cap s_{0}=r \cap s_{1}=\emptyset$.
Consider the pencil of planes $\Pi_{l}, I \in \mathbb{P}_{1}$, containing r : each such plane cuts S on the line r plus a (generically smooth) plane cubic curve E_{l}; the point $P_{0}=s_{0} \cap \Pi_{l}$ lies in E_{l}, as well as the point $P_{1}=s_{1} \cap \Pi_{/}$.

Note that $r \cap s_{0}=r \cap s_{1}=\emptyset$.
Consider the pencil of planes $\Pi_{l}, I \in \mathbb{P}_{1}$, containing r : each such plane cuts S on the line r plus a (generically smooth) plane cubic curve E_{l}; the point $P_{0}=s_{0} \cap \Pi_{l}$ lies in E_{l}, as well as the point $P_{1}=s_{1} \cap \Pi_{/}$. Taking for the origin of the group law on E_{l} the point P_{0}, P_{1} turns out to be of infinite order.

Note that $r \cap s_{0}=r \cap s_{1}=\emptyset$.
Consider the pencil of planes $\Pi_{l}, I \in \mathbb{P}_{1}$, containing r : each such plane cuts S on the line r plus a (generically smooth) plane cubic curve E_{l}; the point $P_{0}=s_{0} \cap \Pi_{l}$ lies in E_{l}, as well as the point $P_{1}=s_{1} \cap \Pi_{/}$. Taking for the origin of the group law on E_{l} the point P_{0}, P_{1} turns out to be of infinite order.

Note that $r \cap s_{0}=r \cap s_{1}=\emptyset$.
Consider the pencil of planes $\Pi_{/}, I \in \mathbb{P}_{1}$, containing r : each such plane cuts S on the line r plus a (generically smooth) plane cubic curve E_{l}; the point $P_{0}=s_{0} \cap \Pi_{l}$ lies in E_{l}, as well as the point $P_{1}=s_{1} \cap \Pi_{/}$. Taking for the origin of the group law on E_{l} the point P_{0}, P_{1} turns out to be of infinite order.
It follows that for all but finitely many rational values of the parameter $I \in \mathbb{P}_{1}$, the corresponding point $P_{1}(I)$ has infinite order in E_{l}.

Note that $r \cap s_{0}=r \cap s_{1}=\emptyset$.
Consider the pencil of planes $\Pi_{/}, I \in \mathbb{P}_{1}$, containing r : each such plane cuts S on the line r plus a (generically smooth) plane cubic curve E_{l}; the point $P_{0}=s_{0} \cap \Pi_{l}$ lies in E_{l}, as well as the point $P_{1}=s_{1} \cap \Pi_{/}$. Taking for the origin of the group law on E_{l} the point P_{0}, P_{1} turns out to be of infinite order.
It follows that for all but finitely many rational values of the parameter $I \in \mathbb{P}_{1}$, the corresponding point $P_{1}(I)$ has infinite order in E_{l}.
In particular, the surface contains infinitely many genus-one curves each with infinitely many rational points.

Note that $r \cap s_{0}=r \cap s_{1}=\emptyset$.
Consider the pencil of planes $\Pi_{/}, I \in \mathbb{P}_{1}$, containing r : each such plane cuts S on the line r plus a (generically smooth) plane cubic curve E_{l}; the point $P_{0}=s_{0} \cap \Pi_{l}$ lies in E_{l}, as well as the point $P_{1}=s_{1} \cap \Pi_{/}$. Taking for the origin of the group law on E_{l} the point P_{0}, P_{1} turns out to be of infinite order.
It follows that for all but finitely many rational values of the parameter $I \in \mathbb{P}_{1}$, the corresponding point $P_{1}(I)$ has infinite order in E_{l}.
In particular, the surface contains infinitely many genus-one curves each with infinitely many rational points.
Then $S(\mathbb{Q})$ is Zariski-dense.

Note that $r \cap s_{0}=r \cap s_{1}=\emptyset$.
Consider the pencil of planes $\Pi_{l}, I \in \mathbb{P}_{1}$, containing r : each such plane cuts S on the line r plus a (generically smooth) plane cubic curve E_{l}; the point $P_{0}=s_{0} \cap \Pi_{l}$ lies in E_{l}, as well as the point $P_{1}=s_{1} \cap \Pi_{/}$. Taking for the origin of the group law on E_{l} the point P_{0}, P_{1} turns out to be of infinite order.
It follows that for all but finitely many rational values of the parameter $I \in \mathbb{P}_{1}$, the corresponding point $P_{1}(I)$ has infinite order in $E_{/}$.
In particular, the surface contains infinitely many genus-one curves each with infinitely many rational points.
Then $S(\mathbb{Q})$ is Zariski-dense. It is also dense in the usual topology, in the set of real points $S(\mathbb{R})$.

The surfaces corresponding to taxi-cab numbers of degree 5 and more admit no elliptic fibrations.

The surfaces corresponding to taxi-cab numbers of degree 5 and more admit no elliptic fibrations.
They are surfaces of general type.

The surfaces corresponding to taxi-cab numbers of degree 5 and more admit no elliptic fibrations.
They are surfaces of general type.
According to Bombieri's conjecture, its rational points should be degenerate.

The surfaces corresponding to taxi-cab numbers of degree 5 and more admit no elliptic fibrations.
They are surfaces of general type.
According to Bombieri's conjecture, its rational points should be degenerate.
For large values of the exponents, the only 1-dimensional families of points are the trivial lines.

The surfaces corresponding to taxi-cab numbers of degree 5 and more admit no elliptic fibrations.
They are surfaces of general type.
According to Bombieri's conjecture, its rational points should be degenerate.
For large values of the exponents, the only 1-dimensional families of points are the trivial lines.

Birational classification of algebraic surfaces:

Birational classification of algebraic surfaces:

- Rational surfaces

Birational classification of algebraic surfaces:

- Rational surfaces
- Ruled surfaces

Birational classification of algebraic surfaces:

- Rational surfaces
- Ruled surfaces
- Elliptic surfaces

Birational classification of algebraic surfaces:

- Rational surfaces
- Ruled surfaces
- Elliptic surfaces
- Abelian (and bi-elliptic, Kummer) surfaces

Birational classification of algebraic surfaces:

- Rational surfaces
- Ruled surfaces
- Elliptic surfaces
- Abelian (and bi-elliptic, Kummer) surfaces
- K3 (and Enriques) surfaces

Birational classification of algebraic surfaces:

- Rational surfaces
- Ruled surfaces
- Elliptic surfaces
- Abelian (and bi-elliptic, Kummer) surfaces
- K3 (and Enriques) surfaces
- Surfaces of general type.

Birational classification of algebraic surfaces:

- Rational surfaces
- Ruled surfaces
- Elliptic surfaces
- Abelian (and bi-elliptic, Kummer) surfaces
- K3 (and Enriques) surfaces
- Surfaces of general type.

Conjecture [Bombieri-Lang].

Birational classification of algebraic surfaces:

- Rational surfaces
- Ruled surfaces
- Elliptic surfaces
- Abelian (and bi-elliptic, Kummer) surfaces
- K3 (and Enriques) surfaces
- Surfaces of general type.

Conjecture [Bombieri-Lang]. The rational points on surfaces of general type, on any given number field, are not Zariski-dense.

The analogue in dimension one, known as Mordell's Conjecture, had been proved by Faltings.

The analogue in dimension one, known as Mordell's Conjecture, had been proved by Faltings.
As a consequence of Faltings' theorem, whenever a surface S dominates a curve of genus ≥ 2, then the rational points on S are degenerate.

The analogue in dimension one, known as Mordell's Conjecture, had been proved by Faltings.
As a consequence of Faltings' theorem, whenever a surface S dominates a curve of genus ≥ 2, then the rational points on S are degenerate.
A more general theorem of Faltings:

The analogue in dimension one, known as Mordell's Conjecture, had been proved by Faltings.
As a consequence of Faltings' theorem, whenever a surface S dominates a curve of genus ≥ 2, then the rational points on S are degenerate.
A more general theorem of Faltings:
Theorem [Faltings]. Given an abelian variety A and an algebraic subvariety $X \subset A$, all defined over number field κ, the set $X(\kappa)$ is contained in a finite union of translates of abelian subvarieties of A contained in X.

Given a (projective) algebraic variety X,

Given a (projective) algebraic variety X, there exists an abelian variety $\operatorname{Alb}(X)$, named the Albanese variety of X,

Given a (projective) algebraic variety X, there exists an abelian variety $\operatorname{Alb}(X)$, named the Albanese variety of X, endowed with a rational map $a_{X}: X \rightarrow \operatorname{Alb}(X)$,

Given a (projective) algebraic variety X, there exists an abelian variety $\operatorname{Alb}(X)$, named the Albanese variety of X, endowed with a rational map $a_{X}: X \rightarrow \operatorname{Alb}(X)$, with the following universal property

Given a (projective) algebraic variety X, there exists an abelian variety $\operatorname{Alb}(X)$, named the Albanese variety of X, endowed with a rational map $a_{X}: X \rightarrow \operatorname{Alb}(X)$, with the following universal property
for every rational map $f: X \rightarrow B$ to any abelian variety B,

Given a (projective) algebraic variety X, there exists an abelian variety $\operatorname{Alb}(X)$, named the Albanese variety of X, endowed with a rational map $a_{X}: X \rightarrow \operatorname{Alb}(X)$, with the following universal property
for every rational map $f: X \rightarrow B$ to any abelian variety B, there exists a morphism $\phi: A l b(X) \rightarrow B$ such that $f=\phi \circ a_{X}$:

$$
f: X \rightarrow \operatorname{Alb}(X) \longrightarrow B
$$

Given a (projective) algebraic variety X, there exists an abelian variety $\operatorname{Alb}(X)$, named the Albanese variety of X, endowed with a rational map $a_{X}: X \rightarrow \operatorname{Alb}(X)$, with the following universal property
for every rational map $f: X \rightarrow B$ to any abelian variety B, there exists a morphism $\phi: A l b(X) \rightarrow B$ such that $f=\phi \circ a_{X}$:

$$
f: X \rightarrow \operatorname{Alb}(X) \longrightarrow B
$$

Faltings' theorem can be applied, providing the degeneracy of rational points, on every algebraic variety X with

$$
q(X):=\operatorname{dim} \operatorname{Alb}(X)>\operatorname{dim} X
$$

Given a (projective) algebraic variety X, there exists an abelian variety $\operatorname{Alb}(X)$, named the Albanese variety of X, endowed with a rational map $a_{X}: X \rightarrow \operatorname{Alb}(X)$, with the following universal property
for every rational map $f: X \rightarrow B$ to any abelian variety B, there exists a morphism $\phi: A l b(X) \rightarrow B$ such that $f=\phi \circ a_{X}$:

$$
f: X \rightarrow \operatorname{Alb}(X) \longrightarrow B
$$

Faltings' theorem can be applied, providing the degeneracy of rational points, on every algebraic variety X with

$$
q(X):=\operatorname{dim} \operatorname{Alb}(X)>\operatorname{dim} X
$$

More generally, to algebraic varieties rationally dominating a variety which can be embedded in an abelian variety.

By the Chevalley-Weil Theorem, rational points lift to étale covers:

By the Chevalley-Weil Theorem, rational points lift to étale covers: Given a finite étale cover $\pi: X \rightarrow Y$ of algebraic varieties over a number field κ,

By the Chevalley-Weil Theorem, rational points lift to étale covers: Given a finite étale cover $\pi: X \rightarrow Y$ of algebraic varieties over a number field κ, there exists a number field $\kappa^{\prime} \supset \kappa$ such that

$$
\pi\left(X\left(\kappa^{\prime}\right)\right) \supset Y(\kappa)
$$

Bombier-Lang Conjecture applies also to varieties admitting an étale cover dominating a variety of general type.

Integral Points.

Integral Points. Let $\tilde{X} \subset \mathbb{P}_{n}$ be a projective variety.

Integral Points. Let $\tilde{X} \subset \mathbb{P}_{n}$ be a projective variety. Let $D \subset \tilde{X}$ be a closed subvariety, all defined over a number field κ.

Integral Points. Let $\tilde{X} \subset \mathbb{P}_{n}$ be a projective variety. Let $D \subset \tilde{X}$ be a closed subvariety, all defined over a number field κ. Let \mathcal{O}_{S} be a ring of S-integers of κ. A rational point $x \in \tilde{X}(\kappa)$ is S-integral with respect to D if

Integral Points. Let $\tilde{X} \subset \mathbb{P}_{n}$ be a projective variety. Let $D \subset \tilde{X}$ be a closed subvariety, all defined over a number field κ. Let \mathcal{O}_{S} be a ring of S-integers of κ. A rational point $x \in \tilde{X}(\kappa)$ is S-integral with respect to D if for no prime ideal of \mathcal{O}_{S} it reduces to D modulo that ideal.

Integral Points. Let $\tilde{X} \subset \mathbb{P}_{n}$ be a projective variety. Let $D \subset \tilde{X}$ be a closed subvariety, all defined over a number field κ. Let \mathcal{O}_{S} be a ring of S-integers of κ. A rational point $x \in \tilde{X}(\kappa)$ is S-integral with respect to D if for no prime ideal of \mathcal{O}_{S} it reduces to D modulo that ideal.
Letting $X=\tilde{X} \backslash D$ the quasi projective variety obtained by removing the closed subvariety D,

Integral Points. Let $\tilde{X} \subset \mathbb{P}_{n}$ be a projective variety. Let $D \subset \tilde{X}$ be a closed subvariety, all defined over a number field κ. Let \mathcal{O}_{S} be a ring of S-integers of κ. A rational point $x \in \tilde{X}(\kappa)$ is S-integral with respect to D if for no prime ideal of \mathcal{O}_{S} it reduces to D modulo that ideal.
Letting $X=\tilde{X} \backslash D$ the quasi projective variety obtained by removing the closed subvariety D, we denote by $X\left(\mathcal{O}_{S}\right)$ the set of S-integral points of \tilde{X} with respect to D.

Integral Points. Let $\tilde{X} \subset \mathbb{P}_{n}$ be a projective variety. Let $D \subset \tilde{X}$ be a closed subvariety, all defined over a number field κ. Let \mathcal{O}_{S} be a ring of S-integers of κ. A rational point $x \in \tilde{X}(\kappa)$ is S-integral with respect to D if for no prime ideal of \mathcal{O}_{S} it reduces to D modulo that ideal.
Letting $X=\tilde{X} \backslash D$ the quasi projective variety obtained by removing the closed subvariety D, we denote by $X\left(\mathcal{O}_{S}\right)$ the set of S-integral points of \tilde{X} with respect to D.
Up to enlarging S, the density of $X\left(\mathcal{O}_{S}\right)$ only depends on the abstract quasi projective variety X over κ, not on the compactification \tilde{X} nor on its projective embedding $\tilde{X} \hookrightarrow \mathbb{P}_{n}$.

Vojta's Conjecture. Suppose \tilde{X} is smooth, and D is a hypersurface with normal crossing singularities.

Vojta's Conjecture. Suppose \tilde{X} is smooth, and D is a hypersurface with normal crossing singularities.
Letting $K_{\tilde{X}}$ be a canonical divisor,

Vojta's Conjecture. Suppose \tilde{X} is smooth, and D is a hypersurface with normal crossing singularities.
Letting $K_{\tilde{X}}$ be a canonical divisor, suppose that the sum

$$
K_{\tilde{x}}+D
$$

is a big divisor.

Vojta's Conjecture. Suppose \tilde{X} is smooth, and D is a hypersurface with normal crossing singularities.
Letting $K_{\tilde{X}}$ be a canonical divisor, suppose that the sum

$$
K_{\tilde{x}}+D
$$

is a big divisor. Then $X\left(\mathcal{O}_{S}\right)$ is not Zariski-dense.

In the case $\tilde{X}=\mathbb{P}_{2}$, the condition on D amounts to the fact that
D be a curve with normal crossing singularities and

In the case $\tilde{X}=\mathbb{P}_{2}$, the condition on D amounts to the fact that
D be a curve with normal crossing singularities and

$$
\operatorname{deg} D \geq 4
$$

In the case $\tilde{X}=\mathbb{P}_{2}$, the condition on D amounts to the fact that D be a curve with normal crossing singularities and

$$
\operatorname{deg} D \geq 4
$$

Whenever D has four or more components, the problem is solved using the Subspace Theorem.

In the case $\tilde{X}=\mathbb{P}_{2}$, the condition on D amounts to the fact that D be a curve with normal crossing singularities and

$$
\operatorname{deg} D \geq 4
$$

Whenever D has four or more components, the problem is solved using the Subspace Theorem.
When D is the union of four lines in general position, it reduces to the Diophatine equation

In the case $\tilde{X}=\mathbb{P}_{2}$, the condition on D amounts to the fact that
D be a curve with normal crossing singularities and

$$
\operatorname{deg} D \geq 4
$$

Whenever D has four or more components, the problem is solved using the Subspace Theorem.
When D is the union of four lines in general position, it reduces to the Diophatine equation

$$
u+v+w=1
$$

to be solved in S-units $u, v, w \in \mathcal{O}_{S}^{*}$.

Still open: $\tilde{X}=\mathbb{P}_{2}, D$ the union of a conic and two lines in general position.

Still open: $\tilde{X}=\mathbb{P}_{2}, D$ the union of a conic and two lines in general position.
An instance of this problem on integral points:

Still open: $\tilde{X}=\mathbb{P}_{2}, D$ the union of a conic and two lines in general position.
An instance of this problem on integral points: squares with only three non-zero digits.

Still open: $\tilde{X}=\mathbb{P}_{2}, D$ the union of a conic and two lines in general position.
An instance of this problem on integral points: squares with only three non-zero digits.
Suppose that the natural number n can be written as

$$
n=a 10^{h}+b 10^{k}
$$

where $0<a \leq 9,0<b \leq 9,0 \leq h<k$.

Still open: $\tilde{X}=\mathbb{P}_{2}, D$ the union of a conic and two lines in general position.
An instance of this problem on integral points: squares with only three non-zero digits.
Suppose that the natural number n can be written as

$$
n=a 10^{h}+b 10^{k}
$$

where $0<a \leq 9,0<b \leq 9,0 \leq h<k$. In base ten it has only 2 non-zero digits.

Still open: $\tilde{X}=\mathbb{P}_{2}, D$ the union of a conic and two lines in general position.
An instance of this problem on integral points: squares with only three non-zero digits.
Suppose that the natural number n can be written as

$$
n=a 10^{h}+b 10^{k},
$$

where $0<a \leq 9,0<b \leq 9,0 \leq h<k$. In base ten it has only 2 non-zero digits. Since

$$
n^{2}=a^{2} 10^{2 h}+2 a b 10^{h+k}+b^{2} 10^{2 k}
$$

Still open: $\tilde{X}=\mathbb{P}_{2}, D$ the union of a conic and two lines in general position.
An instance of this problem on integral points: squares with only three non-zero digits.
Suppose that the natural number n can be written as

$$
n=a 10^{h}+b 10^{k},
$$

where $0<a \leq 9,0<b \leq 9,0 \leq h<k$. In base ten it has only 2 non-zero digits. Since

$$
n^{2}=a^{2} 10^{2 h}+2 a b 10^{h+k}+b^{2} 10^{2 k}
$$

if $a^{2} \leq 9, b^{2} \leq 9,2 a b \leq 9$ the number n^{2} has three non-zero digits.

Still open: $\tilde{X}=\mathbb{P}_{2}, D$ the union of a conic and two lines in general position.
An instance of this problem on integral points: squares with only three non-zero digits.
Suppose that the natural number n can be written as

$$
n=a 10^{h}+b 10^{k},
$$

where $0<a \leq 9,0<b \leq 9,0 \leq h<k$. In base ten it has only 2 non-zero digits. Since

$$
n^{2}=a^{2} 10^{2 h}+2 a b 10^{h+k}+b^{2} 10^{2 k}
$$

if $a^{2} \leq 9, b^{2} \leq 9,2 a b \leq 9$ the number n^{2} has three non-zero digits. Do there exist numbers with more then two non-zero digits, whose square has only three non-zero digits?

Still open: $\tilde{X}=\mathbb{P}_{2}, D$ the union of a conic and two lines in general position.
An instance of this problem on integral points: squares with only three non-zero digits.
Suppose that the natural number n can be written as

$$
n=a 10^{h}+b 10^{k},
$$

where $0<a \leq 9,0<b \leq 9,0 \leq h<k$. In base ten it has only 2 non-zero digits. Since

$$
n^{2}=a^{2} 10^{2 h}+2 a b 10^{h+k}+b^{2} 10^{2 k}
$$

if $a^{2} \leq 9, b^{2} \leq 9,2 a b \leq 9$ the number n^{2} has three non-zero digits. Do there exist numbers with more then two non-zero digits, whose square has only three non-zero digits?
Via a method relying on the Subspace Theorem, the finitenss for the set of such numbers is proved (Corvaja-Zannier).

Still open: $\tilde{X}=\mathbb{P}_{2}, D$ the union of a conic and two lines in general position.
An instance of this problem on integral points: squares with only three non-zero digits.
Suppose that the natural number n can be written as

$$
n=a 10^{h}+b 10^{k},
$$

where $0<a \leq 9,0<b \leq 9,0 \leq h<k$. In base ten it has only 2 non-zero digits. Since

$$
n^{2}=a^{2} 10^{2 h}+2 a b 10^{h+k}+b^{2} 10^{2 k}
$$

if $a^{2} \leq 9, b^{2} \leq 9,2 a b \leq 9$ the number n^{2} has three non-zero digits. Do there exist numbers with more then two non-zero digits, whose square has only three non-zero digits?
Via a method relying on the Subspace Theorem, the finitenss for the set of such numbers is proved (Corvaja-Zannier).
Same result for bases other than the base ten.

Still open: $\tilde{X}=\mathbb{P}_{2}, D$ the union of a conic and two lines in general position.
An instance of this problem on integral points: squares with only three non-zero digits.
Suppose that the natural number n can be written as

$$
n=a 10^{h}+b 10^{k},
$$

where $0<a \leq 9,0<b \leq 9,0 \leq h<k$. In base ten it has only 2 non-zero digits. Since

$$
n^{2}=a^{2} 10^{2 h}+2 a b 10^{h+k}+b^{2} 10^{2 k}
$$

if $a^{2} \leq 9, b^{2} \leq 9,2 a b \leq 9$ the number n^{2} has three non-zero digits. Do there exist numbers with more then two non-zero digits, whose square has only three non-zero digits?
Via a method relying on the Subspace Theorem, the finitenss for the set of such numbers is proved (Corvaja-Zannier).
Same result for bases other than the base ten.

Theorem (Vojta). Let G be a semi-abelian variety, $X \subset G$ be an algebraic subvariety. Then $X\left(\mathcal{O}_{S}\right)$ is contained in the union of finitely many translates of algebraic subgroups contained in X.

Theorem (Vojta). Let G be a semi-abelian variety, $X \subset G$ be an algebraic subvariety. Then $X\left(\mathcal{O}_{S}\right)$ is contained in the union of finitely many translates of algebraic subgroups contained in X. In particular, $X\left(\mathcal{O}_{S}\right)$ can be Zariski-dense only if X is a transalte of an algebraic subgroup of G.

Theorem (Vojta). Let G be a semi-abelian variety, $X \subset G$ be an algebraic subvariety. Then $X\left(\mathcal{O}_{S}\right)$ is contained in the union of finitely many translates of algebraic subgroups contained in X. In particular, $X\left(\mathcal{O}_{S}\right)$ can be Zariski-dense only if X is a transalte of an algebraic subgroup of G.
The affine surface $\mathbb{P}_{2}-D$ embeds in a torus $\mathbb{G}_{m}{ }^{3}$ if D is a union of ≥ 4 lines.

Theorem (Vojta). Let G be a semi-abelian variety, $X \subset G$ be an algebraic subvariety. Then $X\left(\mathcal{O}_{S}\right)$ is contained in the union of finitely many translates of algebraic subgroups contained in X. In particular, $X\left(\mathcal{O}_{S}\right)$ can be Zariski-dense only if X is a transalte of an algebraic subgroup of G.

The affine surface $\mathbb{P}_{2}-D$ embeds in a torus $\mathbb{G}_{m}{ }^{3}$ if D is a union of ≥ 4 lines.
Vojta's theorem gives no information about the integral points on the complement of a three component curve with normal crossing singularities in \mathbb{P}_{2}.

Theorem (Vojta). Let G be a semi-abelian variety, $X \subset G$ be an algebraic subvariety. Then $X\left(\mathcal{O}_{S}\right)$ is contained in the union of finitely many translates of algebraic subgroups contained in X. In particular, $X\left(\mathcal{O}_{S}\right)$ can be Zariski-dense only if X is a transalte of an algebraic subgroup of G.

The affine surface $\mathbb{P}_{2}-D$ embeds in a torus $\mathbb{G}_{m}{ }^{3}$ if D is a union of ≥ 4 lines.
Vojta's theorem gives no information about the integral points on the complement of a three component curve with normal crossing singularities in \mathbb{P}_{2}.
A way of applying Vojta's Theorem:

Theorem (Vojta). Let G be a semi-abelian variety, $X \subset G$ be an algebraic subvariety. Then $X\left(\mathcal{O}_{S}\right)$ is contained in the union of finitely many translates of algebraic subgroups contained in X. In particular, $X\left(\mathcal{O}_{S}\right)$ can be Zariski-dense only if X is a transalte of an algebraic subgroup of G.

The affine surface $\mathbb{P}_{2}-D$ embeds in a torus $\mathbb{G}_{m}{ }^{3}$ if D is a union of ≥ 4 lines.
Vojta's theorem gives no information about the integral points on the complement of a three component curve with normal crossing singularities in \mathbb{P}_{2}.
A way of applying Vojta's Theorem: given a quasi-projective variety X,

Theorem (Vojta). Let G be a semi-abelian variety, $X \subset G$ be an algebraic subvariety. Then $X\left(\mathcal{O}_{S}\right)$ is contained in the union of finitely many translates of algebraic subgroups contained in X. In particular, $X\left(\mathcal{O}_{S}\right)$ can be Zariski-dense only if X is a transalte of an algebraic subgroup of G.

The affine surface $\mathbb{P}_{2}-D$ embeds in a torus $\mathbb{G}_{m}{ }^{3}$ if D is a union of ≥ 4 lines.
Vojta's theorem gives no information about the integral points on the complement of a three component curve with normal crossing singularities in \mathbb{P}_{2}.
A way of applying Vojta's Theorem: given a quasi-projective variety X, find an étale cover $Y \rightarrow X$ and a morphism $Y \rightarrow G$ to a semi-abelian variety whose image is not an algebraic subgroup of G.

Generalized Albanese variety:

Generalized Albanese variety: Let X be a quasi projective smooth algebraic variety over \mathbb{C}.

Generalized Albanese variety: Let X be a quasi projective smooth algebraic variety over \mathbb{C}.
There exists a semi-abelian variety G and a morphism $\pi: X \rightarrow G$ with the universal property:

Generalized Albanese variety: Let X be a quasi projective smooth algebraic variety over \mathbb{C}.
There exists a semi-abelian variety G and a morphism $\pi: X \rightarrow G$ with the universal property:
For every morphism $f: X \rightarrow B$ to any semi-abelian variety,

Generalized Albanese variety: Let X be a quasi projective smooth algebraic variety over \mathbb{C}.
There exists a semi-abelian variety G and a morphism $\pi: X \rightarrow G$ with the universal property:
For every morphism $f: X \rightarrow B$ to any semi-abelian variety, there exists a morphism $\phi: G \rightarrow B$ such that $f=\phi \circ \pi$.

Generalized Albanese variety: Let X be a quasi projective smooth algebraic variety over \mathbb{C}.
There exists a semi-abelian variety G and a morphism $\pi: X \rightarrow G$ with the universal property:
For every morphism $f: X \rightarrow B$ to any semi-abelian variety, there exists a morphism $\phi: G \rightarrow B$ such that $f=\phi \circ \pi$.
G is an extension of the usual $\operatorname{Albanese} \operatorname{Alb}(\tilde{X})$ of a compactification \tilde{X} by a torus.

Generalized Albanese variety: Let X be a quasi projective smooth algebraic variety over \mathbb{C}.
There exists a semi-abelian variety G and a morphism $\pi: X \rightarrow G$ with the universal property:
For every morphism $f: X \rightarrow B$ to any semi-abelian variety, there exists a morphism $\phi: G \rightarrow B$ such that $f=\phi \circ \pi$.
G is an extension of the usual $\operatorname{Albanese} \operatorname{Alb}(\tilde{X})$ of a compactification \tilde{X} by a torus.
Letting $q(X)=\operatorname{dim} G$ (generalized irregularity).

Generalized Albanese variety: Let X be a quasi projective smooth algebraic variety over \mathbb{C}.
There exists a semi-abelian variety G and a morphism $\pi: X \rightarrow G$ with the universal property:
For every morphism $f: X \rightarrow B$ to any semi-abelian variety, there exists a morphism $\phi: G \rightarrow B$ such that $f=\phi \circ \pi$.
G is an extension of the usual $\operatorname{Albanese} \operatorname{Alb}(\tilde{X})$ of a compactification \tilde{X} by a torus.
Letting $q(X)=\operatorname{dim} G$ (generalized irregularity).
By Vojta's theorem, whenever $q(X)>\operatorname{dim} X$,

Generalized Albanese variety: Let X be a quasi projective smooth algebraic variety over \mathbb{C}.
There exists a semi-abelian variety G and a morphism $\pi: X \rightarrow G$ with the universal property:
For every morphism $f: X \rightarrow B$ to any semi-abelian variety, there exists a morphism $\phi: G \rightarrow B$ such that $f=\phi \circ \pi$.
G is an extension of the usual $\operatorname{Albanese} \operatorname{Alb}(\tilde{X})$ of a compactification \tilde{X} by a torus.
Letting $q(X)=\operatorname{dim} G$ (generalized irregularity).
By Vojta's theorem, whenever $q(X)>\operatorname{dim} X$, the set of integral points $X\left(\mathcal{O}_{S}\right)$ is degenerate.

A problem about elliptic curves over \mathbb{Q}.

A problem about elliptic curves over \mathbb{Q}. Suppose an elliptic curve is given in its Weierstarss equation over \mathbb{Z} :

A problem about elliptic curves over \mathbb{Q}. Suppose an elliptic curve is given in its Weierstarss equation over \mathbb{Z} :

$$
y^{2}=x^{3}+a x+b
$$

A problem about elliptic curves over \mathbb{Q}.
Suppose an elliptic curve is given in its Weierstarss equation over \mathbb{Z} :

$$
y^{2}=x^{3}+a x+b
$$

The rational points can be written in reduced fraction as

$$
(x, y)=\left(\frac{u}{d^{2}}, \frac{v}{d^{3}}\right)
$$

for coprime integers u, v, d.

A problem about elliptic curves over \mathbb{Q}.
Suppose an elliptic curve is given in its Weierstarss equation over \mathbb{Z} :

$$
y^{2}=x^{3}+a x+b
$$

The rational points can be written in reduced fraction as

$$
(x, y)=\left(\frac{u}{d^{2}}, \frac{v}{d^{3}}\right)
$$

for coprime integers u, v, d.
Define the denominator of $P=(x, y)$ to be

$$
d(P)=d(x, y)=d
$$

We can conjecture the following:

We can conjecture the following:
Let E_{1}, E_{2} be two elliptic curves with infinitely many rational points.

We can conjecture the following:
Let E_{1}, E_{2} be two elliptic curves with infinitely many rational points. Suppose there exist infinitely many pairs $\left(P_{1}, P_{2}\right) \in E_{1} \times E_{2}(\mathbb{Q})$ such that

$$
(*) \quad d\left(P_{1}\right)=d\left(P_{2}\right)
$$

We can conjecture the following:
Let E_{1}, E_{2} be two elliptic curves with infinitely many rational points. Suppose there exist infinitely many pairs
$\left(P_{1}, P_{2}\right) \in E_{1} \times E_{2}(\mathbb{Q})$ such that

$$
(*) \quad d\left(P_{1}\right)=d\left(P_{2}\right)
$$

Then E_{1} and E_{2} are isomorphic, and, after identifying $E_{1} \simeq E_{2}$, for all but finitely many solutions $\left(P_{1}, P_{2}\right)$ to $(*), P_{1}= \pm P_{2}$.

We can conjecture the following:
Let E_{1}, E_{2} be two elliptic curves with infinitely many rational points. Suppose there exist infinitely many pairs $\left(P_{1}, P_{2}\right) \in E_{1} \times E_{2}(\mathbb{Q})$ such that

$$
(*) \quad d\left(P_{1}\right)=d\left(P_{2}\right)
$$

Then E_{1} and E_{2} are isomorphic, and, after identifying $E_{1} \simeq E_{2}$, for all but finitely many solutions $\left(P_{1}, P_{2}\right)$ to $(*), P_{1}= \pm P_{2}$.

This would follow from Vojta's Conjecture on integral points applied to the following surface:

We can conjecture the following:
Let E_{1}, E_{2} be two elliptic curves with infinitely many rational points. Suppose there exist infinitely many pairs
$\left(P_{1}, P_{2}\right) \in E_{1} \times E_{2}(\mathbb{Q})$ such that

$$
(*) \quad d\left(P_{1}\right)=d\left(P_{2}\right)
$$

Then E_{1} and E_{2} are isomorphic, and, after identifying $E_{1} \simeq E_{2}$, for all but finitely many solutions $\left(P_{1}, P_{2}\right)$ to $(*), P_{1}= \pm P_{2}$.
This would follow from Vojta's Conjecture on integral points applied to the following surface:
Let \tilde{S} be the blow-up of $E_{1} \times E_{2}$ over the origin $\left(O_{1}, O_{2}\right)$.

We can conjecture the following:
Let E_{1}, E_{2} be two elliptic curves with infinitely many rational points. Suppose there exist infinitely many pairs
$\left(P_{1}, P_{2}\right) \in E_{1} \times E_{2}(\mathbb{Q})$ such that

$$
(*) \quad d\left(P_{1}\right)=d\left(P_{2}\right)
$$

Then E_{1} and E_{2} are isomorphic, and, after identifying $E_{1} \simeq E_{2}$, for all but finitely many solutions $\left(P_{1}, P_{2}\right)$ to $(*), P_{1}= \pm P_{2}$.
This would follow from Vojta's Conjecture on integral points applied to the following surface:
Let \tilde{S} be the blow-up of $E_{1} \times E_{2}$ over the origin (O_{1}, O_{2}). Let D be the divisor formed by the strict transforms of the curves $\left\{O_{1}\right\} \times E_{2}$ and $E_{1} \times\left\{O_{2}\right\}$.

We can conjecture the following:
Let E_{1}, E_{2} be two elliptic curves with infinitely many rational points. Suppose there exist infinitely many pairs
$\left(P_{1}, P_{2}\right) \in E_{1} \times E_{2}(\mathbb{Q})$ such that

$$
(*) \quad d\left(P_{1}\right)=d\left(P_{2}\right)
$$

Then E_{1} and E_{2} are isomorphic, and, after identifying $E_{1} \simeq E_{2}$, for all but finitely many solutions $\left(P_{1}, P_{2}\right)$ to $(*), P_{1}= \pm P_{2}$.
This would follow from Vojta's Conjecture on integral points applied to the following surface:
Let \tilde{S} be the blow-up of $E_{1} \times E_{2}$ over the origin (O_{1}, O_{2}). Let D be the divisor formed by the strict transforms of the curves $\left\{O_{1}\right\} \times E_{2}$ and $E_{1} \times\left\{O_{2}\right\}$. Put $S=\tilde{S} \backslash D$.

We can conjecture the following:
Let E_{1}, E_{2} be two elliptic curves with infinitely many rational points. Suppose there exist infinitely many pairs
$\left(P_{1}, P_{2}\right) \in E_{1} \times E_{2}(\mathbb{Q})$ such that

$$
(*) \quad d\left(P_{1}\right)=d\left(P_{2}\right)
$$

Then E_{1} and E_{2} are isomorphic, and, after identifying $E_{1} \simeq E_{2}$, for all but finitely many solutions $\left(P_{1}, P_{2}\right)$ to $(*), P_{1}= \pm P_{2}$.
This would follow from Vojta's Conjecture on integral points applied to the following surface:
Let \tilde{S} be the blow-up of $E_{1} \times E_{2}$ over the origin (O_{1}, O_{2}). Let D be the divisor formed by the strict transforms of the curves $\left\{O_{1}\right\} \times E_{2}$ and $E_{1} \times\left\{O_{2}\right\}$. Put $S=\tilde{S} \backslash D$.
A pair $\left(P_{1}, P_{2}\right)$ of rational points in $E_{1} \times E_{2}$ with $d\left(P_{1}\right)=d\left(P_{2}\right)$ lifts to an integral point of S.

The surface S has generalized irregularity $q(S)=2$.

The surface S has generalized irregularity $q(S)=2$. A weaker result holds:

The surface S has generalized irregularity $q(S)=2$. A weaker result holds:

Suppose that for infinitely many pairs $\left(P_{1}, P_{2}\right) \in E_{1} \times E_{2}(\mathbb{Q})$

The surface S has generalized irregularity $q(S)=2$. A weaker result holds:
Suppose that for infinitely many pairs $\left(P_{1}, P_{2}\right) \in E_{1} \times E_{2}(\mathbb{Q})$

$$
(* *) \quad d\left(P_{1}\right)=d\left(P_{2}\right) \quad \text { and } \quad d\left(2 P_{1}\right)=d\left(2 P_{2}\right)
$$

The surface S has generalized irregularity $q(S)=2$.
A weaker result holds:
Suppose that for infinitely many pairs $\left(P_{1}, P_{2}\right) \in E_{1} \times E_{2}(\mathbb{Q})$

$$
(* *) \quad d\left(P_{1}\right)=d\left(P_{2}\right) \quad \text { and } \quad d\left(2 P_{1}\right)=d\left(2 P_{2}\right) .
$$

Then E_{1} and E_{2} are isomorphic, and, after identifying $E_{1} \simeq E_{2}$, for all but finitely many solutions $\left(P_{1}, P_{2}\right)$ to $(* *), P_{1}= \pm P_{2}$.

The surface S has generalized irregularity $q(S)=2$.
A weaker result holds:
Suppose that for infinitely many pairs $\left(P_{1}, P_{2}\right) \in E_{1} \times E_{2}(\mathbb{Q})$

$$
(* *) \quad d\left(P_{1}\right)=d\left(P_{2}\right) \quad \text { and } \quad d\left(2 P_{1}\right)=d\left(2 P_{2}\right) .
$$

Then E_{1} and E_{2} are isomorphic, and, after identifying $E_{1} \simeq E_{2}$, for all but finitely many solutions $\left(P_{1}, P_{2}\right)$ to $(* *), P_{1}= \pm P_{2}$.
The statement amounts to the degeneracy of integral points on a surface S^{\prime} with $q\left(S^{\prime}\right)=3$.

Whenever a quasi projective surface S is simply connected, then $q(S)=0$.

Whenever a quasi projective surface S is simply connected, then $q(S)=0$.
No chance of using Faltings-Vojta's method.

Whenever a quasi projective surface S is simply connected, then $q(S)=0$.
No chance of using Faltings-Vojta's method.
However there exist cases of simply connected smooth algebraic surfaces for which the degeneracy of integral points can be proved.

Whenever a quasi projective surface S is simply connected, then $q(S)=0$.
No chance of using Faltings-Vojta's method.
However there exist cases of simply connected smooth algebraic surfaces for which the degeneracy of integral points can be proved. An example can be stated via the following statement about divisibility:

Whenever a quasi projective surface S is simply connected, then $q(S)=0$. No chance of using Faltings-Vojta's method.
However there exist cases of simply connected smooth algebraic surfaces for which the degeneracy of integral points can be proved. An example can be stated via the following statement about divisibility:
Theorem (Corvaja-Zannier). Let $f_{1}, f_{2}, f_{3} \in \mathcal{O}_{S}[x, y]$ (resp.
g_{1}, g_{2}, g_{3}) be polynomials of the same degree $d \geq 1$.

Whenever a quasi projective surface S is simply connected, then $q(S)=0$.
No chance of using Faltings-Vojta's method.
However there exist cases of simply connected smooth algebraic surfaces for which the degeneracy of integral points can be proved. An example can be stated via the following statement about divisibility:
Theorem (Corvaja-Zannier). Let $f_{1}, f_{2}, f_{3} \in \mathcal{O}_{S}[x, y]$ (resp.
g_{1}, g_{2}, g_{3}) be polynomials of the same degree $d \geq 1$. Suppose the following (generically satisfied) conditions hold:

Whenever a quasi projective surface S is simply connected, then $q(S)=0$.
No chance of using Faltings-Vojta's method.
However there exist cases of simply connected smooth algebraic surfaces for which the degeneracy of integral points can be proved. An example can be stated via the following statement about divisibility:
Theorem (Corvaja-Zannier). Let $f_{1}, f_{2}, f_{3} \in \mathcal{O}_{S}[x, y]$ (resp.
g_{1}, g_{2}, g_{3}) be polynomials of the same degree $d \geq 1$. Suppose the following (generically satisfied) conditions hold:

- no three of the six polynomials share a common zero in \mathbb{C}^{2};

Whenever a quasi projective surface S is simply connected, then $q(S)=0$.
No chance of using Faltings-Vojta's method.
However there exist cases of simply connected smooth algebraic surfaces for which the degeneracy of integral points can be proved. An example can be stated via the following statement about divisibility:
Theorem (Corvaja-Zannier). Let $f_{1}, f_{2}, f_{3} \in \mathcal{O}_{S}[x, y]$ (resp.
g_{1}, g_{2}, g_{3}) be polynomials of the same degree $d \geq 1$. Suppose the following (generically satisfied) conditions hold:

- no three of the six polynomials share a common zero in \mathbb{C}^{2};
- for each $i=1,2,3$, the two algebraic curves $f_{i}(x, y)=0$ and $g_{i}(x, y)=0$ meet in exactly d^{2} complex points;

Whenever a quasi projective surface S is simply connected, then $q(S)=0$.
No chance of using Faltings-Vojta's method.
However there exist cases of simply connected smooth algebraic surfaces for which the degeneracy of integral points can be proved. An example can be stated via the following statement about divisibility:
Theorem (Corvaja-Zannier). Let $f_{1}, f_{2}, f_{3} \in \mathcal{O}_{S}[x, y]$ (resp. $\left.g_{1}, g_{2}, g_{3}\right)$ be polynomials of the same degree $d \geq 1$. Suppose the following (generically satisfied) conditions hold:

- no three of the six polynomials share a common zero in \mathbb{C}^{2};
- for each $i=1,2,3$, the two algebraic curves $f_{i}(x, y)=0$ and $g_{i}(x, y)=0$ meet in exactly d^{2} complex points;
- no two of the three curves $f_{i}(x, y)=0$ meet at infinity.

Whenever a quasi projective surface S is simply connected, then $q(S)=0$.
No chance of using Faltings-Vojta's method.
However there exist cases of simply connected smooth algebraic surfaces for which the degeneracy of integral points can be proved. An example can be stated via the following statement about divisibility:
Theorem (Corvaja-Zannier). Let $f_{1}, f_{2}, f_{3} \in \mathcal{O}_{S}[x, y]$ (resp. $\left.g_{1}, g_{2}, g_{3}\right)$ be polynomials of the same degree $d \geq 1$. Suppose the following (generically satisfied) conditions hold:

- no three of the six polynomials share a common zero in \mathbb{C}^{2};
- for each $i=1,2,3$, the two algebraic curves $f_{i}(x, y)=0$ and $g_{i}(x, y)=0$ meet in exactly d^{2} complex points;
- no two of the three curves $f_{i}(x, y)=0$ meet at infinity.

Whenever a quasi projective surface S is simply connected, then $q(S)=0$.
No chance of using Faltings-Vojta's method.
However there exist cases of simply connected smooth algebraic surfaces for which the degeneracy of integral points can be proved. An example can be stated via the following statement about divisibility:
Theorem (Corvaja-Zannier). Let $f_{1}, f_{2}, f_{3} \in \mathcal{O}_{S}[x, y]$ (resp.
g_{1}, g_{2}, g_{3}) be polynomials of the same degree $d \geq 1$. Suppose the following (generically satisfied) conditions hold:

- no three of the six polynomials share a common zero in \mathbb{C}^{2};
- for each $i=1,2,3$, the two algebraic curves $f_{i}(x, y)=0$ and $g_{i}(x, y)=0$ meet in exactly d^{2} complex points;
- no two of the three curves $f_{i}(x, y)=0$ meet at infinity.

Then the solutions $(x, y) \in \mathcal{O}_{S}^{2}$ to the divisibility conditions

Whenever a quasi projective surface S is simply connected, then $q(S)=0$.
No chance of using Faltings-Vojta's method.
However there exist cases of simply connected smooth algebraic surfaces for which the degeneracy of integral points can be proved. An example can be stated via the following statement about divisibility:
Theorem (Corvaja-Zannier). Let $f_{1}, f_{2}, f_{3} \in \mathcal{O}_{S}[x, y]$ (resp.
g_{1}, g_{2}, g_{3}) be polynomials of the same degree $d \geq 1$. Suppose the following (generically satisfied) conditions hold:

- no three of the six polynomials share a common zero in \mathbb{C}^{2};
- for each $i=1,2,3$, the two algebraic curves $f_{i}(x, y)=0$ and $g_{i}(x, y)=0$ meet in exactly d^{2} complex points;
- no two of the three curves $f_{i}(x, y)=0$ meet at infinity.

Then the solutions $(x, y) \in \mathcal{O}_{S}^{2}$ to the divisibility conditions

$$
f_{i}(x, y) \mid g_{i}(x, y)
$$

Whenever a quasi projective surface S is simply connected, then $q(S)=0$.
No chance of using Faltings-Vojta's method.
However there exist cases of simply connected smooth algebraic surfaces for which the degeneracy of integral points can be proved. An example can be stated via the following statement about divisibility:
Theorem (Corvaja-Zannier). Let $f_{1}, f_{2}, f_{3} \in \mathcal{O}_{S}[x, y]$ (resp. g_{1}, g_{2}, g_{3}) be polynomials of the same degree $d \geq 1$. Suppose the following (generically satisfied) conditions hold:

- no three of the six polynomials share a common zero in \mathbb{C}^{2};
- for each $i=1,2,3$, the two algebraic curves $f_{i}(x, y)=0$ and $g_{i}(x, y)=0$ meet in exactly d^{2} complex points;
- no two of the three curves $f_{i}(x, y)=0$ meet at infinity.

Then the solutions $(x, y) \in \mathcal{O}_{S}^{2}$ to the divisibility conditions

$$
f_{i}(x, y) \mid g_{i}(x, y)
$$

are not Zariski-dense in the plane.

