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or in rationals x ∈ QN .

The complex solutions (x1, . . . , xN) ∈ CN form an algebraic variety.
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An unsolved problem on intergral points on surfaces:

Does the Diophantine equation

x3 + y3 + z3 = 33.

admit an integral solution?

YES:

(x , y , z) = (8866128975287528, 8778405442862239, 2736111468807040)
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New equation:
x3 + y3 + z3 = 42

Solved in September 2019.

Replace 42 by 114: still unsolved.
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All the above equations admit a Zariski-dense set of rational
solutions.



Taxi-cab numbers:

Ramanujan observed that 1729 is the minimal integer which can be
written as a sum of two cubes into two essentially different ways:

1729 = 123 + 13 = 93 + 103.

Consider the Diophantine equation:

X 3 + Y 3 = Z 3 + W 3.

Its complex solutions form a (rational) surface in P3.
Its rational points, outside the trivial lines{

X = Z
Y = W

{
X = W
Y = Z

{
X = −Y
Z = −W

give rise to non-zero integers which can be written as sums of two
cubes into two different ways. There is a Zariski-dense set of
rational points.
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Constructing many rational points on cubic surfaces:

I take one rational point (provided there are any)

I cut the surface with the tangent plane at that point,
obtaining a singular plane cubic curve

I parametrize the cubic curve via the pencil of tangent lines
passing through the point

I repeat the process with any of the infinitely many points so
obtained.

Applying this method to the taxi-cab surface, starting e.g. from
the Ramanujan point (1 : 12 : 9 : 10), one obtains infinitely many
taxi-cab numbers.
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Taxi-cab numbers of higher degree.

Are there numbers expressible as sums of two fourth powers in two
different ways?
Yes:

674 + 1334 = 594 + 1584

Consider the surface S ⊂ P3 of equation

X 4 + Y 4 = Z 4 + W 4

It is a K3 surface. Its rational points (outside the ‘trivial lines’)
give rise to taxi-cab numbers of the fourth degree.
Let r , s0, s1 be the lines

r :

{
X = Z
Y = W

s0 :

{
X = −W
Y = Z

s1 :

{
X = W
Y = −Z
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Note that r ∩ s0 = r ∩ s1 = ∅.

Consider the pencil of planes Πl , l ∈ P1, containing r : each such
plane cuts S on the line r plus a (generically smooth) plane cubic
curve El ;
the point P0 = s0 ∩ Πl lies in El , as well as the point P1 = s1 ∩ Πl .
Taking for the origin of the group law on El the point P0, P1 turns
out to be of infinite order.
It follows that for all but finitely many rational values of the
parameter l ∈ P1, the corresponding point P1(l) has infinite order
in El .
In particular, the surface contains infinitely many genus-one curves
each with infinitely many rational points.
Then S(Q) is Zariski-dense. It is also dense in the usual topology,
in the set of real points S(R).
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The surfaces corresponding to taxi-cab numbers of degree 5 and
more admit no elliptic fibrations.

They are surfaces of general type.
According to Bombieri’s conjecture, its rational points should be
degenerate.
For large values of the exponents, the only 1-dimensional families
of points are the trivial lines.
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Birational classification of algebraic surfaces:

I Rational surfaces

I Ruled surfaces

I Elliptic surfaces

I Abelian (and bi-elliptic, Kummer) surfaces

I K3 (and Enriques) surfaces

I Surfaces of general type.

Conjecture [Bombieri-Lang].The rational points on surfaces of
general type, on any given number field, are not Zariski-dense.



Birational classification of algebraic surfaces:

I Rational surfaces

I Ruled surfaces

I Elliptic surfaces

I Abelian (and bi-elliptic, Kummer) surfaces

I K3 (and Enriques) surfaces

I Surfaces of general type.

Conjecture [Bombieri-Lang].The rational points on surfaces of
general type, on any given number field, are not Zariski-dense.



Birational classification of algebraic surfaces:

I Rational surfaces

I Ruled surfaces

I Elliptic surfaces

I Abelian (and bi-elliptic, Kummer) surfaces

I K3 (and Enriques) surfaces

I Surfaces of general type.

Conjecture [Bombieri-Lang].The rational points on surfaces of
general type, on any given number field, are not Zariski-dense.



Birational classification of algebraic surfaces:

I Rational surfaces

I Ruled surfaces

I Elliptic surfaces

I Abelian (and bi-elliptic, Kummer) surfaces

I K3 (and Enriques) surfaces

I Surfaces of general type.

Conjecture [Bombieri-Lang].The rational points on surfaces of
general type, on any given number field, are not Zariski-dense.



Birational classification of algebraic surfaces:

I Rational surfaces

I Ruled surfaces

I Elliptic surfaces

I Abelian (and bi-elliptic, Kummer) surfaces

I K3 (and Enriques) surfaces

I Surfaces of general type.

Conjecture [Bombieri-Lang].The rational points on surfaces of
general type, on any given number field, are not Zariski-dense.



Birational classification of algebraic surfaces:

I Rational surfaces

I Ruled surfaces

I Elliptic surfaces

I Abelian (and bi-elliptic, Kummer) surfaces

I K3 (and Enriques) surfaces

I Surfaces of general type.

Conjecture [Bombieri-Lang].The rational points on surfaces of
general type, on any given number field, are not Zariski-dense.



Birational classification of algebraic surfaces:

I Rational surfaces

I Ruled surfaces

I Elliptic surfaces

I Abelian (and bi-elliptic, Kummer) surfaces

I K3 (and Enriques) surfaces

I Surfaces of general type.

Conjecture [Bombieri-Lang].The rational points on surfaces of
general type, on any given number field, are not Zariski-dense.



Birational classification of algebraic surfaces:

I Rational surfaces

I Ruled surfaces

I Elliptic surfaces

I Abelian (and bi-elliptic, Kummer) surfaces

I K3 (and Enriques) surfaces

I Surfaces of general type.

Conjecture [Bombieri-Lang].

The rational points on surfaces of
general type, on any given number field, are not Zariski-dense.



Birational classification of algebraic surfaces:

I Rational surfaces

I Ruled surfaces

I Elliptic surfaces

I Abelian (and bi-elliptic, Kummer) surfaces

I K3 (and Enriques) surfaces

I Surfaces of general type.

Conjecture [Bombieri-Lang].The rational points on surfaces of
general type, on any given number field, are not Zariski-dense.



The analogue in dimension one, known as Mordell’s Conjecture,
had been proved by Faltings.

As a consequence of Faltings’ theorem, whenever a surface S
dominates a curve of genus ≥ 2, then the rational points on S are
degenerate.
A more general theorem of Faltings:

Theorem [Faltings]. Given an abelian variety A and an algebraic
subvariety X ⊂ A, all defined over number field κ, the set X (κ) is
contained in a finite union of translates of abelian subvarieties of A
contained in X .
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Given a (projective) algebraic variety X ,

there exists an abelian
variety Alb(X ), named the Albanese variety of X , endowed with a
rational map aX : X → Alb(X ), with the following universal
property
for every rational map f : X 99K B to any abelian variety B, there
exists a morphism φ : Alb(X )→ B such that f = φ ◦ aX :

f : X 99K Alb(X ) −→ B

Faltings’ theorem can be applied, providing the degeneracy of
rational points, on every algebraic variety X with

q(X ) := dimAlb(X ) > dimX .

More generally, to algebraic varieties rationally dominating a
variety which can be embedded in an abelian variety.
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By the Chevalley-Weil Theorem, rational points lift to étale covers:

Given a finite étale cover π : X → Y of algebraic varieties over a
number field κ, there exists a number field κ′ ⊃ κ such that

π(X (κ′)) ⊃ Y (κ).

Bombier-Lang Conjecture applies also to varieties admitting an
étale cover dominating a variety of general type.
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Integral Points.

Let X̃ ⊂ Pn be a projective variety. Let D ⊂ X̃
be a closed subvariety, all defined over a number field κ. Let OS

be a ring of S-integers of κ. A rational point x ∈ X̃ (κ) is
S-integral with respect to D if for no prime ideal of OS it reduces
to D modulo that ideal.

Letting X = X̃ \ D the quasi projective variety obtained by
removing the closed subvariety D, we denote by X (OS) the set of
S-integral points of X̃ with respect to D.
Up to enlarging S , the density of X (OS) only depends on the
abstract quasi projective variety X over κ, not on the
compactification X̃ nor on its projective embedding X̃ ↪→ Pn.
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Vojta’s Conjecture. Suppose X̃ is smooth, and D is a
hypersurface with normal crossing singularities.

Letting KX̃ be a canonical divisor, suppose that the sum

KX̃ + D

is a big divisor. Then X (OS) is not Zariski-dense.
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In the case X̃ = P2, the condition on D amounts to the fact that
D be a curve with normal crossing singularities and

degD ≥ 4.

Whenever D has four or more components, the problem is solved
using the Subspace Theorem.
When D is the union of four lines in general position, it reduces to
the Diophatine equation

u + v + w = 1

to be solved in S-units u, v ,w ∈ O∗S .
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Still open: X̃ = P2, D the union of a conic and two lines in general
position.

An instance of this problem on integral points: squares with only
three non-zero digits.
Suppose that the natural number n can be written as

n = a10h + b10k ,

where 0 < a ≤ 9, 0 < b ≤ 9, 0 ≤ h < k . In base ten it has only 2
non-zero digits. Since

n2 = a2102h + 2ab10h+k + b2102k ,

if a2 ≤ 9, b2 ≤ 9, 2ab ≤ 9 the number n2 has three non-zero digits.
Do there exist numbers with more then two non-zero digits, whose
square has only three non-zero digits?

Via a method relying on the Subspace Theorem, the finitenss for
the set of such numbers is proved (Corvaja-Zannier).
Same result for bases other than the base ten.
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Theorem (Vojta). Let G be a semi-abelian variety, X ⊂ G be an
algebraic subvariety. Then X (OS) is contained in the union of
finitely many translates of algebraic subgroups contained in X .

In
particular, X (OS) can be Zariski-dense only if X is a transalte of
an algebraic subgroup of G .

The affine surface P2 D embeds in a torus Gm
3 if D is a union of

≥ 4 lines.
Vojta’s theorem gives no information about the integral points on
the complement of a three component curve with normal crossing
singularities in P2.

A way of applying Vojta’s Theorem: given a quasi-projective
variety X , find an étale cover Y → X and a morphism Y → G to
a semi-abelian variety whose image is not an algebraic subgroup of
G .
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Generalized Albanese variety:

Let X be a quasi projective smooth
algebraic variety over C.
There exists a semi-abelian variety G and a morphism π : X → G
with the universal property:
For every morphism f : X → B to any semi-abelian variety, there
exists a morphism φ : G → B such that f = φ ◦ π.

G is an extension of the usual Albanese Alb(X̃ ) of a
compactification X̃ by a torus.
Letting q(X ) = dimG (generalized irregularity).
By Vojta’s theorem, whenever q(X ) > dimX , the set of integral
points X (OS) is degenerate.
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A problem about elliptic curves over Q.

Suppose an elliptic curve is given in its Weierstarss equation over
Z:

y2 = x3 + ax + b.

The rational points can be written in reduced fraction as

(x , y) =
( u

d2
,
v

d3

)
,

for coprime integers u, v , d .
Define the denominator of P = (x , y) to be

d(P) = d(x , y) = d .
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We can conjecture the following:

Let E1,E2 be two elliptic curves with infinitely many rational
points. Suppose there exist infinitely many pairs
(P1,P2) ∈ E1 × E2(Q) such that

(∗) d(P1) = d(P2).

Then E1 and E2 are isomorphic, and, after identifying E1 ' E2, for
all but finitely many solutions (P1,P2) to (∗), P1 = ±P2.

This would follow from Vojta’s Conjecture on integral points
applied to the following surface:
Let S̃ be the blow-up of E1 × E2 over the origin (O1,O2). Let D
be the divisor formed by the strict transforms of the curves
{O1} × E2 and E1 × {O2}. Put S = S̃ \ D.
A pair (P1,P2) of rational points in E1 × E2 with d(P1) = d(P2)
lifts to an integral point of S .
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The surface S has generalized irregularity q(S) = 2.

A weaker result holds:

Suppose that for infinitely many pairs (P1,P2) ∈ E1 × E2(Q)

(∗∗) d(P1) = d(P2) and d(2P1) = d(2P2).

Then E1 and E2 are isomorphic, and, after identifying E1 ' E2, for
all but finitely many solutions (P1,P2) to (∗∗), P1 = ±P2.

The statement amounts to the degeneracy of integral points on a
surface S ′ with q(S ′) = 3.
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Whenever a quasi projective surface S is simply connected, then
q(S) = 0.

No chance of using Faltings-Vojta’s method.

However there exist cases of simply connected smooth algebraic
surfaces for which the degeneracy of integral points can be proved.
An example can be stated via the following statement about
divisibility:
Theorem (Corvaja-Zannier). Let f1, f2, f3 ∈ OS [x , y ] (resp.
g1, g2, g3) be polynomials of the same degree d ≥ 1. Suppose the
following (generically satisfied) conditions hold:

I no three of the six polynomials share a common zero in C2;

I for each i = 1, 2, 3, the two algebraic curves fi (x , y) = 0 and
gi (x , y) = 0 meet in exactly d2 complex points;

I no two of the three curves fi (x , y) = 0 meet at infinity.

Then the solutions (x , y) ∈ O2
S to the divisibility conditions

fi (x , y)|gi (x , y)

are not Zariski-dense in the plane.
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