## On interesting subsequences of the sequence of primes

Piotr Miska<br>Jagiellonian University in Kraków



4th Number Theory Meeting
Torino, 24 Ottobre 2019
Collaborazione con János T. Tóth (János Sélye University in Komárno, Slovakia)

## Some notation

## Piotr Miska

## Some notation

$$
\begin{gathered}
\mathbb{N}=\{1,2,3,4, \ldots\} \\
\mathbb{N}_{0}=\mathbb{N} \cup\{0\} \\
\mathbb{R}_{+}=(0,+\infty)
\end{gathered}
$$

## Some notation

$$
\begin{gathered}
\mathbb{N}=\{1,2,3,4, \ldots\} \\
\mathbb{N}_{0}=\mathbb{N} \cup\{0\} \\
\mathbb{R}_{+}=(0,+\infty)
\end{gathered}
$$

Let $A \subset \mathbb{N}$. Then

$$
\begin{gathered}
A(x)=\#(A \cap[1, x]), \quad x \geq 1 \\
R(A)=\{a / b: a, b \in A\}
\end{gathered}
$$

$R^{d}(A)=$ the set of accumulation points of $R(A) \subset \mathbb{R}_{+}$.

## Some notation

$$
\begin{gathered}
\mathbb{N}=\{1,2,3,4, \ldots\} \\
\mathbb{N}_{0}=\mathbb{N} \cup\{0\} \\
\mathbb{R}_{+}=(0,+\infty)
\end{gathered}
$$

Let $A \subset \mathbb{N}$. Then

$$
\begin{gathered}
A(x)=\#(A \cap[1, x]), \quad x \geq 1 \\
R(A)=\{a / b: a, b \in A\},
\end{gathered}
$$

$R^{d}(A)=$ the set of accumulation points of $R(A) \subset \mathbb{R}_{+}$.
We say that $A$ is $(R)$-dense if $R^{d}(A)=\mathbb{R}_{+}$.

## Some history \& motivation

## Some history \& motivation

- $\mathbb{P}$ is $(R)$-dense (Schinzel).


## Some history \& motivation

- $\mathbb{P}$ is $(R)$-dense (Schinzel).
- Wide study of $(R)$-denseness of subsets of positive integers (i.e. Šalát, Strauch, Bukor, Tóth, Filip, Garcia, Luca, Sanna)


## Some history \& motivation

- $\mathbb{P}$ is $(R)$-dense (Schinzel).
- Wide study of $(R)$-denseness of subsets of positive integers (i.e. Šalát, Strauch, Bukor, Tóth, Filip, Garcia, Luca, Sanna)
- The set of prime numbers in a fixed aritmetical progression with coprime coefficients is ( $R$ )-dense (Garcia, Selhorst-Jones, Poore, Simon, 2011).


## Some history \& motivation

- $\mathbb{P}$ is $(R)$-dense (Schinzel).
- Wide study of $(R)$-denseness of subsets of positive integers (i.e. Šalát, Strauch, Bukor, Tóth, Filip, Garcia, Luca, Sanna)
- The set of prime numbers in a fixed aritmetical progression with coprime coefficients is ( $R$ )-dense (Garcia, Selhorst-Jones, Poore, Simon, 2011).
- For each increasing and unbounded $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$there exists an $(R)$-dense set $A \subset \mathbb{N}$ with $\lim _{x \rightarrow+\infty} A(x) / f(x)=0$ (Hedman, Rose, 2009).


## Introduction

## Piotr Miska

On interesting subsequences of the sequence of primes

## Introduction

$$
p_{n}^{(0)}=n, \quad p_{n}^{(k+1)}=p_{p_{n}^{(k)}} \quad \text { for } n \in \mathbb{N}, k \in \mathbb{N}_{0}
$$

## Introduction

$$
\begin{gathered}
p_{n}^{(0)}=n, \quad p_{n}^{(k+1)}=p_{p_{n}^{(k)}} \quad \text { for } n \in \mathbb{N}, k \in \mathbb{N}_{0} \\
p_{n}^{(k+1)}=p_{p_{n}^{(k)}}=p_{p_{n}}^{(k)}
\end{gathered}
$$

## Introduction

$$
\begin{gathered}
p_{n}^{(0)}=n, \quad p_{n}^{(k+1)}=p_{p_{n}^{(k)}} \quad \text { for } n \in \mathbb{N}, k \in \mathbb{N}_{0} \\
p_{n}^{(k+1)}=p_{p_{n}^{(k)}}=p_{p_{n}}^{(k)} \\
\mathbb{P}_{k}=\left\{p_{1}^{(k)}<p_{2}^{(k)}<\cdots<p_{n}^{(k)}<\ldots\right\} \quad \text { for } k \in \mathbb{N}_{0}
\end{gathered}
$$

## Introduction

$$
\begin{gathered}
p_{n}^{(0)}=n, \quad p_{n}^{(k+1)}=p_{p_{n}^{(k)}} \quad \text { for } n \in \mathbb{N}, k \in \mathbb{N}_{0} . \\
p_{n}^{(k+1)}=p_{p_{n}^{(k)}}=p_{p_{n}}^{(k)} \\
\mathbb{P}_{k}=\left\{p_{1}^{(k)}<p_{2}^{(k)}<\cdots<p_{n}^{(k)}<\ldots\right\} \quad \text { for } k \in \mathbb{N}_{0} \\
\mathbb{P}_{n}^{T}=\left\{p_{n}^{(1)}<p_{n}^{(2)}<\cdots<p_{n}^{(k)}<\ldots\right\} \quad \text { for } n \in \mathbb{N}
\end{gathered}
$$

## Introduction

$$
\begin{gathered}
p_{n}^{(0)}=n, \quad p_{n}^{(k+1)}=p_{p_{n}^{(k)}} \quad \text { for } n \in \mathbb{N}, k \in \mathbb{N}_{0} . \\
p_{n}^{(k+1)}=p_{p_{n}^{(k)}}=p_{p_{n}}^{(k)} \\
\mathbb{P}_{k}=\left\{p_{1}^{(k)}<p_{2}^{(k)}<\cdots<p_{n}^{(k)}<\ldots\right\} \quad \text { for } k \in \mathbb{N}_{0} \\
\mathbb{P}_{n}^{T}=\left\{p_{n}^{(1)}<p_{n}^{(2)}<\cdots<p_{n}^{(k)}<\ldots\right\} \quad \text { for } n \in \mathbb{N} \\
\mathbb{P}_{k+1} \subsetneq \mathbb{P}_{k}
\end{gathered}
$$

## The sets $\mathbb{P}_{k}$

## Piotr Miska

On interesting subsequences of the sequence of primes

The sets $\mathbb{P}_{k}$

$$
\lim _{x \rightarrow+\infty} \frac{\mathbb{P}_{k+1}(x)}{\mathbb{P}_{k}(x)}=0
$$

The sets $\mathbb{P}_{k}$

$$
\lim _{x \rightarrow+\infty} \frac{\mathbb{P}_{k+1}(x)}{\mathbb{P}_{k}(x)}=0
$$

## Theorem (M, Tóth)

The sets $\mathbb{P}_{k}$

$$
\lim _{x \rightarrow+\infty} \frac{\mathbb{P}_{k+1}(x)}{\mathbb{P}_{k}(x)}=0
$$

## Theorem (M, Tóth)

Let $k \in \mathbb{N}_{0}$. Then:

The sets $\mathbb{P}_{k}$

$$
\lim _{x \rightarrow+\infty} \frac{\mathbb{P}_{k+1}(x)}{\mathbb{P}_{k}(x)}=0
$$

## Theorem ( M , Tóth)

Let $k \in \mathbb{N}_{0}$. Then:

$$
\mathbb{P}_{k}(x) \sim \frac{x}{\log ^{k} x}, \quad x \rightarrow+\infty
$$

The sets $\mathbb{P}_{k}$

$$
\lim _{x \rightarrow+\infty} \frac{\mathbb{P}_{k+1}(x)}{\mathbb{P}_{k}(x)}=0
$$

## Theorem (M, Tóth)

Let $k \in \mathbb{N}_{0}$. Then:

$$
\begin{aligned}
\mathbb{P}_{k}(x) \sim \frac{x}{\log ^{k} x}, & x \rightarrow+\infty, \\
p_{n}^{(k)} \sim n \log ^{k} n, & n \rightarrow+\infty,
\end{aligned}
$$

The sets $\mathbb{P}_{k}$

$$
\lim _{x \rightarrow+\infty} \frac{\mathbb{P}_{k+1}(x)}{\mathbb{P}_{k}(x)}=0
$$

## Theorem (M, Tóth)

Let $k \in \mathbb{N}_{0}$. Then:

$$
\begin{gathered}
\mathbb{P}_{k}(x) \sim \frac{x}{\log ^{k} x}, \quad x \rightarrow+\infty, \\
p_{n}^{(k)} \sim n \log ^{k} n, \quad n \rightarrow+\infty, \\
p_{n+1}^{(k)} \sim p_{n}^{(k)}, \quad n \rightarrow+\infty .
\end{gathered}
$$

## The sets $\mathbb{P}_{k}$

## Piotr Miska

On interesting subsequences of the sequence of primes

# Fact (Starni 1995; Hedman, Rose, 2009) <br> Let $A=\left\{a_{1}<a_{2}<\cdots<a_{n}<\ldots\right\} \subset \mathbb{N}$ such that $\lim _{n \rightarrow+\infty} \frac{a_{n+1}}{a_{n}}=1$. Then the set $A$ is $(R)$-dense. 

# Fact (Starni 1995; Hedman, Rose, 2009) <br> Let $A=\left\{a_{1}<a_{2}<\cdots<a_{n}<\ldots\right\} \subset \mathbb{N}$ such that $\lim _{n \rightarrow+\infty} \frac{a_{n+1}}{a_{n}}=1$. Then the set $A$ is $(R)$-dense. 

## Corollary ( $M$, Tóth)

The set $\mathbb{P}_{k}$ is $(R)$-dense for each $k \in \mathbb{N}_{0}$.

## Convergence exponent

## Convergence exponent

$$
\rho(A)=\inf \left\{\alpha \in[0,+\infty): \sum_{n \in A} n^{-\alpha}<+\infty\right\}
$$

## Convergence exponent

$$
\rho(A)=\inf \left\{\alpha \in[0,+\infty): \sum_{n \in A} n^{-\alpha}<+\infty\right\}
$$

Some properties:

## Convergence exponent

$$
\rho(A)=\inf \left\{\alpha \in[0,+\infty): \sum_{n \in A} n^{-\alpha}<+\infty\right\}
$$

Some properties:

- $\rho(A) \in[0,1]$,


## Convergence exponent

$$
\rho(A)=\inf \left\{\alpha \in[0,+\infty): \sum_{n \in A} n^{-\alpha}<+\infty\right\}
$$

Some properties:

- $\rho(A) \in[0,1]$,
- $\rho(A) \leq \rho(B)$ for any $A \subset B \subset \mathbb{N}$,


## Convergence exponent

$$
\rho(A)=\inf \left\{\alpha \in[0,+\infty): \sum_{n \in A} n^{-\alpha}<+\infty\right\}
$$

Some properties:

- $\rho(A) \in[0,1]$,
- $\rho(A) \leq \rho(B)$ for any $A \subset B \subset \mathbb{N}$,
- if $\alpha>\rho(A)$, then $\sum_{n \in A} n^{-\alpha}<+\infty$,


## Convergence exponent

$$
\rho(A)=\inf \left\{\alpha \in[0,+\infty): \sum_{n \in A} n^{-\alpha}<+\infty\right\}
$$

Some properties:

- $\rho(A) \in[0,1]$,
- $\rho(A) \leq \rho(B)$ for any $A \subset B \subset \mathbb{N}$,
- if $\alpha>\rho(A)$, then $\sum_{n \in A} n^{-\alpha}<+\infty$,
- if $\alpha<\rho(A)$, then $\sum_{n \in A} n^{-\alpha}=+\infty$,


## Convergence exponent

$$
\rho(A)=\inf \left\{\alpha \in[0,+\infty): \sum_{n \in A} n^{-\alpha}<+\infty\right\}
$$

Some properties:

- $\rho(A) \in[0,1]$,
- $\rho(A) \leq \rho(B)$ for any $A \subset B \subset \mathbb{N}$,
- if $\alpha>\rho(A)$, then $\sum_{n \in A} n^{-\alpha}<+\infty$,
- if $\alpha<\rho(A)$, then $\sum_{n \in A} n^{-\alpha}=+\infty$,
- $\rho(A)=\lim \sup _{n \rightarrow+\infty} \frac{\log n}{\log a_{n}}$, where
$A=\left\{a_{1}<a_{2}<\cdots<a_{n}<\ldots\right\}$ (Pólya, Szegő).


## Convergence exponent

$$
\rho(A)=\inf \left\{\alpha \in[0,+\infty): \sum_{n \in A} n^{-\alpha}<+\infty\right\}
$$

Some properties:

- $\rho(A) \in[0,1]$,
- $\rho(A) \leq \rho(B)$ for any $A \subset B \subset \mathbb{N}$,
- if $\alpha>\rho(A)$, then $\sum_{n \in A} n^{-\alpha}<+\infty$,
- if $\alpha<\rho(A)$, then $\sum_{n \in A} n^{-\alpha}=+\infty$,
- $\rho(A)=\lim \sup _{n \rightarrow+\infty} \frac{\log n}{\log a_{n}}$, where
$A=\left\{a_{1}<a_{2}<\cdots<a_{n}<\ldots\right\}$ (Pólya, Szegö).


## Theorem ( M , Tóth)

Let $k \in \mathbb{N}_{0}$. Then $\rho\left(\mathbb{P}_{k}\right)=1$. Moreover, $\sum_{p \in \mathbb{P}_{k}} \frac{1}{p}<+\infty \Leftrightarrow k \geq 2$.

The sets $\mathbb{P}_{n}^{T}$

## Piotr Miska

On interesting subsequences of the sequence of primes

The sets $\mathbb{P}_{n}^{T}$

$$
p_{n}^{(k+1)} \sim p_{n}^{(k)} \log p_{n}^{(k)} \text { as } k \rightarrow+\infty .
$$

The sets $\mathbb{P}_{n}^{T}$

$$
p_{n}^{(k+1)} \sim p_{n}^{(k)} \log p_{n}^{(k)} \text { as } k \rightarrow+\infty
$$

## Fact (Tóth, Zsilinszki, 1995)

Let $A=\left\{a_{1}<a_{2}<\cdots<a_{n}<\ldots\right\} \subset \mathbb{N}$ with $\liminf _{n \rightarrow+\infty} \frac{a_{n+1}}{a_{n}}=c>1$. Then $R^{d}(A) \cap\left(\frac{1}{c}, c\right)=\emptyset$.

The sets $\mathbb{P}_{n}^{T}$

$$
p_{n}^{(k+1)} \sim p_{n}^{(k)} \log p_{n}^{(k)} \text { as } k \rightarrow+\infty
$$

## Fact (Tóth, Zsilinszki, 1995)

Let $A=\left\{a_{1}<a_{2}<\cdots<a_{n}<\ldots\right\} \subset \mathbb{N}$ with $\liminf _{n \rightarrow+\infty} \frac{a_{n+1}}{a_{n}}=c>1$. Then $R^{d}(A) \cap\left(\frac{1}{c}, c\right)=\emptyset$.

## Corollary (M, Tóth)

For each $n \in \mathbb{N}$ the set $\mathbb{P}_{n}^{T}$ is not $(R)$-dense. Moreover, $R^{d}\left(\mathbb{P}_{n}^{T}\right)=\varnothing$.

The sets $\mathbb{P}_{n}^{T}$

## Piotr Miska

On interesting subsequences of the sequence of primes

## The sets $\mathbb{P}_{n}^{T}$

## Theorem (M, Tóth)

Let $n, m \in \mathbb{N}$ with $n<m$. Then,

$$
\mathbb{P}_{n}^{T} \cap \mathbb{P}_{m}^{T} \neq \emptyset \Longleftrightarrow m \in \mathbb{P}_{n}^{T} .
$$

Moreover, if $m \in \mathbb{P}_{n}^{T}$, then $\mathbb{P}_{m}^{T} \subset \mathbb{P}_{n}^{T}$ and

$$
\mathbb{P}_{n}^{T} \backslash \mathbb{P}_{m}^{T}=\left\{p_{n}^{(1)}, p_{n}^{(2)}, \ldots, p_{n}^{(k)}\right\} \quad \text { where } \quad m=p_{n}^{(k)} .
$$

## The sets $\mathbb{P}_{n}^{T}$

## Theorem ( M , Tóth)

Let $n, m \in \mathbb{N}$ with $n<m$. Then,

$$
\mathbb{P}_{n}^{T} \cap \mathbb{P}_{m}^{T} \neq \emptyset \Longleftrightarrow m \in \mathbb{P}_{n}^{T} .
$$

Moreover, if $m \in \mathbb{P}_{n}^{T}$, then $\mathbb{P}_{m}^{T} \subset \mathbb{P}_{n}^{T}$ and

$$
\mathbb{P}_{n}^{T} \backslash \mathbb{P}_{m}^{T}=\left\{p_{n}^{(1)}, p_{n}^{(2)}, \ldots, p_{n}^{(k)}\right\} \quad \text { where } \quad m=p_{n}^{(k)}
$$

## Theorem ( M , Tóth)

For any $m, n \in \mathbb{N}, n<m$ we have

$$
\left|\mathbb{P}_{m}^{T}(x)-\mathbb{P}_{n}^{T}(x)\right| \in\{j, j+1\},
$$

where $p_{n}^{(j)} \leq m<p_{n}^{(j+1)}$. Then, $\mathbb{P}_{m}^{T}(x) \sim \mathbb{P}_{n}^{T}(x)$.

## Bounds for $p_{n}^{()}$( $n$ fixed)

## Bounds for $p_{n}^{(j)}(n$ fixed $)$

## Theorem ( M , Tóth)

For each $n \in \mathbb{N}$ and $k, j \in \mathbb{N}_{0}$ with $j \geq k$ the following estimations hold:
(i) $p_{n}^{(j)} \geq p_{n}^{(k)} \log ^{j-k} p_{n}^{(k)}$,
(ii) $p_{n}^{(j)} \geq p_{n}^{(k)} \prod_{i=0}^{j-k-1}\left(\log p_{n}^{(k)}+i \log \log p_{n}^{(k)}\right)$.

## Bounds for $p_{n}^{(j)}(n$ fixed)

## Theorem ( M , Tóth)

For each $n \in \mathbb{N}$ and $k, j \in \mathbb{N}_{0}$ with $j \geq k$ the following estimations hold:
(i) $p_{n}^{(j)} \geq p_{n}^{(k)} \log ^{j-k} p_{n}^{(k)}$,
(ii) $p_{n}^{(j)} \geq p_{n}^{(k)} \prod_{i=0}^{j-k-1}\left(\log p_{n}^{(k)}+i \log \log p_{n}^{(k)}\right)$.

## Theorem ( M , Tóth)

Let $n \in \mathbb{N}$. Then, there exists a $k_{0} \in \mathbb{N}$ such that for each $k, j \in \mathbb{N}$, $j \geq k \geq k_{0}$, we have

$$
p_{n}^{(j)} \leq p_{n}^{(k)} \log (j-k+1) \log (j-k+1) p_{n}^{(k)} .
$$

## Bounds for $p_{n}^{()}$( $n$ fixed)

## Bounds for $p_{n}^{(j)}$ ( $n$ fixed)

## Corollary (M, Tóth)

Let $n \in \mathbb{N}$. Then, there exists a $k_{0} \in \mathbb{N}$ such that for each $k, j \in \mathbb{N}$, $j \geq k \geq k_{0}$, we have

$$
p_{n}^{(j)} \leq 2^{j-k} p_{n}^{(k)} \prod_{i=1}^{j-k}\left(\log p_{n}^{(k)}+i \log i \log \log p_{n}^{(k)}\right)
$$

## Bounds for $p_{n}^{(j)}(n$ fixed)

## Corollary (M, Tóth)

Let $n \in \mathbb{N}$. Then, there exists a $k_{0} \in \mathbb{N}$ such that for each $k, j \in \mathbb{N}$, $j \geq k \geq k_{0}$, we have

$$
p_{n}^{(j)} \leq 2^{j-k} p_{n}^{(k)} \prod_{i=1}^{j-k}\left(\log p_{n}^{(k)}+i \log i \log \log p_{n}^{(k)}\right)
$$

## Corollary (M, Tóth)

For each $n \in \mathbb{N}$ we have

$$
\log p_{n}^{(j)} \sim j \log j, \quad j \rightarrow+\infty .
$$

## Bounds for $\mathbb{P}_{n}^{T}$ and convergence exponent for $\mathbb{P}_{n}^{T}$

## Bounds for $\mathbb{P}_{n}^{T}$ and convergence exponent for $\mathbb{P}_{n}^{T}$

## Corollary ( M , Tóth)

Let $n \in \mathbb{N}$ and $c \in(0,1)$. Then, we have

$$
\mathbb{P}_{n}^{T}(x)=o(\log x) \text { and } \mathbb{P}_{n}^{T}(x)=\omega\left(\log ^{c} x\right)
$$

as $x \rightarrow+\infty$. In particular,

$$
\log \mathbb{P}_{n}^{T}(x) \sim \log \log x
$$

## Bounds for $\mathbb{P}_{n}^{T}$ and convergence exponent for $\mathbb{P}_{n}^{T}$

## Corollary ( M , Tóth)

Let $n \in \mathbb{N}$ and $c \in(0,1)$. Then, we have

$$
\mathbb{P}_{n}^{T}(x)=o(\log x) \text { and } \mathbb{P}_{n}^{T}(x)=\omega\left(\log ^{c} x\right)
$$

as $x \rightarrow+\infty$. In particular,

$$
\log \mathbb{P}_{n}^{T}(x) \sim \log \log x
$$

## Theorem (M, Tóth)

For every $n \in \mathbb{N}$ we have $\rho\left(\mathbb{P}_{n}^{T}\right)=0$. For each $\alpha>0$ $S_{n}^{T, \alpha}=\sum_{p \in \mathbb{P}_{n}^{T}} \frac{1}{p^{\alpha}} \rightarrow 0$ as $n \rightarrow+\infty$. Moreover, if we put $S_{n}^{T, \alpha}(x)=\sum_{p \in \mathbb{P}_{n}^{T}, p \leq x} \frac{1}{p^{\alpha}}$ and assume that $p_{n}^{(k-1)} \leq x<p_{n}^{(k)}$ for some integer $k \geq 2$, then $S_{n}^{T, \alpha}-S_{n}^{T, \alpha}(x) \leq \frac{1}{\left(p_{n}^{(k)}\right)^{\alpha}} \frac{\left(\log p_{n}^{(k)}\right)^{\alpha}}{\left(\log p_{n}^{(k)}\right)^{\alpha}-1}$.

## Diag $\mathbb{P}$

## Piotr Miska

On interesting subsequences of the sequence of primes

## Diag $\mathbb{P}$

Let us consider the set $\operatorname{Diag} \mathbb{P}=\left\{p_{k}^{(k)}: k \in \mathbb{N}\right\}$ of the elements on the diagonal of the infinite matrix

$$
\left[p_{n}^{(k)}\right]_{n, k \in \mathbb{N}}=\left[\begin{array}{ccccc}
p_{1}^{(1)} & p_{1}^{(2)} & \ldots & p_{1}^{(k)} & \ldots \\
p_{2}^{(1)} & p_{2}^{(2)} & \ldots & p_{2}^{(k)} & \ldots \\
\vdots & \vdots & \ddots & \vdots & \ddots \\
p_{n}^{(1)} & p_{n}^{(2)} & \ldots & p_{n}^{(k)} & \ldots \\
\vdots & \vdots & \ddots & \vdots & \ddots
\end{array}\right]
$$

## DiagP

Let us consider the set $\operatorname{Diag} \mathbb{P}=\left\{p_{k}^{(k)}: k \in \mathbb{N}\right\}$ of the elements on the diagonal of the infinite matrix

$$
\left[p_{n}^{(k)}\right]_{n, k \in \mathbb{N}}=\left[\begin{array}{ccccc}
p_{1}^{(1)} & p_{1}^{(2)} & \ldots & p_{1}^{(k)} & \ldots \\
p_{2}^{(1)} & p_{2}^{(2)} & \ldots & p_{2}^{(k)} & \ldots \\
\vdots & \vdots & \ddots & \vdots & \ddots \\
p_{n}^{(1)} & p_{n}^{(2)} & \ldots & p_{n}^{(k)} & \ldots \\
\vdots & \vdots & \ddots & \vdots & \ddots
\end{array}\right]
$$

Properties of Diag $\mathbb{P}$ are analogous to those of $\mathbb{P}_{n}^{T}, n \in \mathbb{N}$.

## Diag $\mathbb{P}$

## Piotr Miska

On interesting subsequences of the sequence of primes

## Diag $\mathbb{P}$

$$
p_{k+1}^{(k+1)}>p_{k+1}^{(k)} \log p_{k+1}^{(k)}>p_{k}^{(k)} \log p_{k}^{(k)}
$$

## DiagP

$$
p_{k+1}^{(k+1)}>p_{k+1}^{(k)} \log p_{k+1}^{(k)}>p_{k}^{(k)} \log p_{k}^{(k)}
$$

## Corollary (M, Tóth)

For each $n \in \mathbb{N}$ the set $\operatorname{Diag} \mathbb{P}$ is not $(R)$-dense. Moreover, $R^{d}(\operatorname{Diag} \mathbb{P})=\varnothing$.

## Diag $\mathbb{P}$

$$
p_{k+1}^{(k+1)}>p_{k+1}^{(k)} \log p_{k+1}^{(k)}>p_{k}^{(k)} \log p_{k}^{(k)}
$$

## Corollary ( M , Tóth)

For each $n \in \mathbb{N}$ the set $\operatorname{Diag} \mathbb{P}$ is not $(R)$-dense. Moreover, $R^{d}(\operatorname{Diag} \mathbb{P})=\varnothing$.

## Theorem ( $M$, Tóth)

We have $\rho(\operatorname{Diag} \mathbb{P})=0$. Moreover, if we put $S_{\text {diag }}^{\alpha}=\sum_{p \in \operatorname{Diag} \mathbb{P}} \frac{1}{p^{\alpha}}$ and $S_{\text {diag }}^{\alpha}(x)=\sum_{p \in \operatorname{Diag}, p \leq x} \frac{1}{p^{\alpha}}$ and assume that $p_{k-1}^{(k-1)} \leq x<p_{k}^{(k)}$ for some integer $k \geq 2$, then
$S_{d i a g}^{\alpha}-S_{d i a g}^{\alpha}(x) \leq \frac{1}{\left(p_{k}^{(k)}\right)^{\alpha}} \frac{\left(\log p_{k}^{(k)}\right)^{\alpha}}{\left(\log p_{k}^{(k)}\right)^{\alpha}-1}$.

## Bounds for $p_{j}^{(j)}$

## Bounds for $p_{j}^{(j)}$

## Theorem (M, Tóth)

For each $k, j \in \mathbb{N}$ with $j \geq k$ the following estimations hold:
(i) $p_{j}^{(j)} \geq p_{k}^{(k)} \log ^{j-k} p_{k}^{(k)}$,
(ii) $p_{j}^{(j)} \geq p_{k}^{(k)} \prod_{i=0}^{j-k-1}\left(\log p_{k}^{(k)}+i \log \log p_{k}^{(k)}\right)$.

## Bounds for $p_{j}^{(j)}$

## Theorem ( M , Tóth)

For each $k, j \in \mathbb{N}$ with $j \geq k$ the following estimations hold:
(i) $p_{j}^{(j)} \geq p_{k}^{(k)} \log ^{j-k} p_{k}^{(k)}$,
(ii) $p_{j}^{(j)} \geq p_{k}^{(k)} \prod_{i=0}^{j-k-1}\left(\log p_{k}^{(k)}+i \log \log p_{k}^{(k)}\right)$.

## Theorem ( M , Tóth)

There exists a $k_{0} \in \mathbb{N}$ such that for each $k, j \in \mathbb{N}_{0}, j \geq k \geq k_{0}$, we have

$$
p_{j}^{(j)} \leq p_{k}^{(k)} \log ^{2(j-k+1) \log (j-k+1)} p_{k}^{(k)}
$$

## Bounds for $p_{j}^{(j)}$

## Bounds for $p_{j}^{(j)}$

## Corollary (M, Tóth)

There exists a $k_{0} \in \mathbb{N}$ such that for each $k, j \in \mathbb{N}, j \geq k \geq k_{0}$, we have

$$
p_{j}^{(j)} \leq 8^{j-k} p_{k}^{(k)} \prod_{i=1}^{j-k}\left(\log p_{k}^{(k)}+i \log i \log \log p_{k}^{(k)}\right)^{2} .
$$

## Bounds for $p_{j}^{(j)}$

## Corollary (M, Tóth)

There exists a $k_{0} \in \mathbb{N}$ such that for each $k, j \in \mathbb{N}, j \geq k \geq k_{0}$, we have

$$
p_{j}^{(j)} \leq 8^{j-k} p_{k}^{(k)} \prod_{i=1}^{j-k}\left(\log p_{k}^{(k)}+i \log i \log \log p_{k}^{(k)}\right)^{2}
$$

## Corollary (M, Tóth)

We have

$$
1 \leq \liminf _{j \rightarrow+\infty} \frac{\log p_{j}^{(j)}}{j \log j} \leq \limsup _{j \rightarrow+\infty} \frac{\log p_{j}^{(j)}}{j \log j} \leq 2
$$

## Bounds for $\operatorname{DiagP}(x)$

## Bounds for $\operatorname{DiagP}(x)$

## Corollary (M, Tóth)

Let $n \in \mathbb{N}$ and $c \in(0,1)$. Then, we have

$$
\operatorname{Diag} \mathbb{P}(x)=o(\log x) \text { and } \operatorname{Diag} \mathbb{P}(x)=\omega\left(\log ^{c} x\right)
$$

as $x \rightarrow+\infty$. In particular,

$$
\log \operatorname{Diag} \mathbb{P}(x) \sim \log \log x
$$

## Bounds for $\operatorname{Diag} \mathbb{P}(x)$

## Corollary (M, Tóth)

Let $n \in \mathbb{N}$ and $c \in(0,1)$. Then, we have

$$
\operatorname{Diag} \mathbb{P}(x)=o(\log x) \text { and } \operatorname{Diag} \mathbb{P}(x)=\omega\left(\log ^{c} x\right)
$$

as $x \rightarrow+\infty$. In particular,

$$
\log \operatorname{Diag} \mathbb{P}(x) \sim \log \log x
$$

## Corollary (M, Tóth)

The following inequalities hold for each $n \in \mathbb{N}$.

$$
1 \leq \liminf _{x \rightarrow+\infty} \frac{\mathbb{P}_{n}^{T}(x)}{\operatorname{Diag} \mathbb{P}(x)} \leq \limsup _{x \rightarrow+\infty} \frac{\mathbb{P}_{n}^{T}(x)}{\operatorname{Diag} \mathbb{P}(x)} \leq 2
$$

In particular, $\operatorname{Diag} \mathbb{P}(x)=\theta\left(\mathbb{P}_{n}^{T}(x)\right)$.

## Problems

## Piotr Miska

On interesting subsequences of the sequence of primes

## Problems

## Question

Is it true that

$$
\operatorname{Diag} \mathbb{P}(x) \sim \mathbb{P}_{n}^{T}(x) ?
$$

## Problems

## Question

Is it true that

$$
\operatorname{Diag} \mathbb{P}(x) \sim \mathbb{P}_{n}^{T}(x) ?
$$

Answer: YES.

## Problems

## Question

Is it true that

$$
\operatorname{Diag} \mathbb{P}(x) \sim \mathbb{P}_{n}^{T}(x) ?
$$

Answer: YES.

## Question

Let $n \in \mathbb{N}$. Are there real constants $c>0$ and $\beta$ such that

$$
\exp \mathbb{P}_{n}^{T}(x) \sim c x \log ^{\beta} x ?
$$

## Problems

## Question

Is it true that

$$
\operatorname{Diag} \mathbb{P}(x) \sim \mathbb{P}_{n}^{T}(x) ?
$$

Answer: YES.

## Question

Let $n \in \mathbb{N}$. Are there real constants $c>0$ and $\beta$ such that

$$
\exp \mathbb{P}_{n}^{T}(x) \sim c x \log ^{\beta} x ?
$$

## Question

Are there real constants $c>0$ and $\beta$ such that

$$
\exp \operatorname{Diag} \mathbb{P}(x) \sim c x \log ^{\beta} x ?
$$

## Problems

## Question

Is it true that

$$
\operatorname{Diag} \mathbb{P}(x) \sim \mathbb{P}_{n}^{T}(x) ?
$$

Answer: YES.

## Question

Let $n \in \mathbb{N}$. Are there real constants $c>0$ and $\beta$ such that

$$
\exp \mathbb{P}_{n}^{T}(x) \sim c x \log ^{\beta} x ?
$$

## Question

Are there real constants $c>0$ and $\beta$ such that

$$
\exp \operatorname{Diag} \mathbb{P}(x) \sim c x \log ^{\beta} x ?
$$

Answer: NO.

## Solution of problems

## Piotr Miska

## Solution of problems

## Theorem (Żmija)

For each $n \in \mathbb{N}$ we have

$$
\mathbb{P}_{n}^{T}(x) \sim \operatorname{Diag} \mathbb{P}(x) \sim \frac{\log x}{\log \log x}
$$

## Further problems

## Piotr Miska

On interesting subsequences of the sequence of primes

## Further problems

## Question

Is it true that $p_{k+1}^{(k)} \sim p_{k}^{(k)}$ as $k \rightarrow+\infty$ ?

## Further problems

## Question

Is it true that $p_{k+1}^{(k)} \sim p_{k}^{(k)}$ as $k \rightarrow+\infty$ ?

## NOT KNOWN

## Further problems

## Question

Is it true that $p_{k+1}^{(k)} \sim p_{k}^{(k)}$ as $k \rightarrow+\infty$ ?

## NOT KNOWN

Conjecture
For every $n \in \mathbb{N}$ we have

$$
\lim _{k \rightarrow+\infty} \frac{p_{n}^{(k)}}{p_{k}^{(k)}}=0
$$

## Further problems

## Question

Is it true that $p_{k+1}^{(k)} \sim p_{k}^{(k)}$ as $k \rightarrow+\infty$ ?

## NOT KNOWN

Conjecture
For every $n \in \mathbb{N}$ we have

$$
\lim _{k \rightarrow+\infty} \frac{p_{n}^{(k)}}{p_{k}^{(k)}}=0
$$

## Proof (Sanna).

Let $k>p_{n}$. Then

$$
0<\frac{p_{n}^{(k)}}{p_{k}^{(k)}}<\frac{p_{n}^{(k)}}{p_{p_{n}}^{(k)}}<\frac{p_{n}^{(k)}}{p_{n}^{(k+1)}}<\frac{1}{\log p_{n}^{(k)}}
$$

## Further study

## Piotr Miska

On interesting subsequences of the sequence of primes

## Further study

$$
A=\left\{a_{1}<a_{2}<a_{3}<\ldots\right\}, \quad a_{n} \sim n \phi(n)
$$

where $\phi:[1,+\infty) \rightarrow[1,+\infty)$ is non-decreasing and such that:

## Further study

$$
A=\left\{a_{1}<a_{2}<a_{3}<\ldots\right\}, \quad a_{n} \sim n \phi(n),
$$

where $\phi:[1,+\infty) \rightarrow[1,+\infty)$ is non-decreasing and such that:

- $\phi(x \phi(x)) \sim \phi(x)$,


## Further study

$$
A=\left\{a_{1}<a_{2}<a_{3}<\ldots\right\}, \quad a_{n} \sim n \phi(n),
$$

where $\phi:[1,+\infty) \rightarrow[1,+\infty)$ is non-decreasing and such that:

- $\phi(x \phi(x)) \sim \phi(x)$,
- $\phi(x)=O\left(\log ^{c}(x)\right)$ for some $c \in \mathbb{R}_{+}$.


## Further study

$$
A=\left\{a_{1}<a_{2}<a_{3}<\ldots\right\}, \quad a_{n} \sim n \phi(n),
$$

where $\phi:[1,+\infty) \rightarrow[1,+\infty)$ is non-decreasing and such that:

- $\phi(x \phi(x)) \sim \phi(x)$,
- $\phi(x)=O\left(\log ^{c}(x)\right)$ for some $c \in \mathbb{R}_{+}$.

The properties of the sets $A_{k}, A_{n}^{T}$ and $\operatorname{Diag} A, k \in \mathbb{N}_{0}, n \in \mathbb{N}$, are analogous as for the sets $\mathbb{P}_{k}, \mathbb{P}_{n}^{T}$ and Diag $\mathbb{P}$, respectively. (Joint work in progress with Jan Šustek (Ostrava, Czech Republic) \& János T. Tóth).

# Grazie mille! 

