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Komárno, Slovakia)

Piotr Miska On interesting subsequences of the sequence of primes



Some notation

N = {1, 2, 3, 4, ...}

N0 = N ∪ {0}

R+ = (0,+∞)

Let A ⊂ N. Then

A(x) = #(A ∩ [1, x ]), x ≥ 1,

R(A) = {a/b : a, b ∈ A},

Rd(A) = the set of accumulation points of R(A) ⊂ R+.

We say that A is (R)-dense if Rd(A) = R+.
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Some history & motivation

P is (R)-dense (Schinzel).

Wide study of (R)-denseness of subsets of positive integers
(i.e. Šalát, Strauch, Bukor, Tóth, Filip, Garcia, Luca, Sanna)

The set of prime numbers in a fixed aritmetical progression
with coprime coefficients is (R)-dense (Garcia, Selhorst-Jones,
Poore, Simon, 2011).

For each increasing and unbounded f : R+ → R+ there exists
an (R)-dense set A ⊂ N with limx→+∞ A(x)/f (x) = 0
(Hedman, Rose, 2009).
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(i.e. Šalát, Strauch, Bukor, Tóth, Filip, Garcia, Luca, Sanna)

The set of prime numbers in a fixed aritmetical progression
with coprime coefficients is (R)-dense (Garcia, Selhorst-Jones,
Poore, Simon, 2011).

For each increasing and unbounded f : R+ → R+ there exists
an (R)-dense set A ⊂ N with limx→+∞ A(x)/f (x) = 0
(Hedman, Rose, 2009).

Piotr Miska On interesting subsequences of the sequence of primes



Some history & motivation

P is (R)-dense (Schinzel).

Wide study of (R)-denseness of subsets of positive integers
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The sets Pk

lim
x→+∞

Pk+1(x)

Pk(x)
= 0

Theorem (M, Tóth)

Let k ∈ N0. Then:

Pk(x) ∼
x

logk x
, x → +∞,

p
(k)
n ∼ n logk n, n→ +∞,

p
(k)
n+1 ∼ p

(k)
n , n→ +∞.
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The sets Pk

Fact (Starni 1995; Hedman, Rose, 2009)

Let A = {a1 < a2 < · · · < an < . . . } ⊂ N such that
limn→+∞

an+1
an

= 1. Then the set A is (R)-dense.

Corollary (M, Tóth)

The set Pk is (R)-dense for each k ∈ N0.
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Convergence exponent

ρ(A) = inf

{
α ∈ [0,+∞) :

∑
n∈A

n−α < +∞

}
Some properties:

ρ(A) ∈ [0, 1],

ρ(A) ≤ ρ(B) for any A ⊂ B ⊂ N,

if α > ρ(A), then
∑

n∈A n−α < +∞,

if α < ρ(A), then
∑

n∈A n−α = +∞,

ρ(A) = lim supn→+∞
log n
log an

, where
A = {a1 < a2 < · · · < an < . . . } (Pólya, Szegő).

Theorem (M, Tóth)

Let k ∈ N0. Then ρ(Pk) = 1. Moreover,∑
p∈Pk

1
p < +∞⇔ k ≥ 2.
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The sets PT
n

p
(k+1)
n ∼ p

(k)
n log p

(k)
n as k → +∞.

Fact (Tóth, Zsilinszki, 1995)

Let A = {a1 < a2 < · · · < an < . . . } ⊂ N with
lim infn→+∞

an+1
an

= c > 1. Then Rd(A) ∩ ( 1c , c) = ∅.

Corollary (M, Tóth)

For each n ∈ N the set PT
n is not (R)-dense. Moreover,

Rd(PT
n ) = ∅.
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The sets PT
n

Theorem (M, Tóth)

Let n,m ∈ N with n < m. Then,

PT
n ∩ PT

m 6= ∅ ⇐⇒ m ∈ PT
n .

Moreover, if m ∈ PT
n , then PT

m ⊂ PT
n and

PT
n \ PT

m = {p(1)n , p
(2)
n , . . . , p

(k)
n } where m = p

(k)
n .

Theorem (M, Tóth)

For any m, n ∈ N, n < m we have∣∣∣PT
m(x)− PT

n (x)
∣∣∣ ∈ {j , j + 1}, ,

where p
(j)
n ≤ m < p

(j+1)
n . Then,

PT
m(x) ∼ PT

n (x) .
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Bounds for p(j)n (n fixed)

Theorem (M, Tóth)

For each n ∈ N and k , j ∈ N0 with j ≥ k the following estimations
hold:

(i) p
(j)
n ≥ p

(k)
n logj−k p

(k)
n ,

(ii) p
(j)
n ≥ p

(k)
n
∏j−k−1

i=0 (log p
(k)
n + i log log p

(k)
n ).

Theorem (M, Tóth)

Let n ∈ N. Then, there exists a k0 ∈ N such that for each k , j ∈ N,
j ≥ k ≥ k0, we have

p
(j)
n ≤ p

(k)
n log(j−k+1) log(j−k+1) p

(k)
n .
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Bounds for p(j)n (n fixed)

Corollary (M, Tóth)

Let n ∈ N. Then, there exists a k0 ∈ N such that for each k , j ∈ N,
j ≥ k ≥ k0, we have

p
(j)
n ≤ 2j−kp(k)n

j−k∏
i=1

(
log p

(k)
n + i log i log log p

(k)
n

)
.

Corollary (M, Tóth)

For each n ∈ N we have

log p
(j)
n ∼ j log j , j → +∞.
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Bounds for PT
n and convergence exponent for PT

n

Corollary (M, Tóth)

Let n ∈ N and c ∈ (0, 1). Then, we have

PT
n (x) = o(log x) and PT

n (x) = ω(logc x)

as x → +∞. In particular,

logPT
n (x) ∼ log log x .

Theorem (M, Tóth)

For every n ∈ N we have ρ(PT
n ) = 0. For each α > 0

ST ,α
n =

∑
p∈PT

n

1
pα → 0 as n→ +∞. Moreover, if we put

ST ,α
n (x) =

∑
p∈PT

n ,p≤x
1
pα and assume that p

(k−1)
n ≤ x < p

(k)
n for

some integer k ≥ 2, then ST ,α
n − ST ,α

n (x) ≤ 1(
p
(k)
n

)α

(
log p

(k)
n

)α(
log p

(k)
n

)α
−1
.
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DiagP

Let us consider the set DiagP = {p(k)k : k ∈ N} of the elements on
the diagonal of the infinite matrix

[p
(k)
n ]n,k∈N =



p
(1)
1 p

(2)
1 . . . p

(k)
1 . . .

p
(1)
2 p

(2)
2 . . . p

(k)
2 . . .

...
...

. . .
...

. . .

p
(1)
n p

(2)
n . . . p

(k)
n . . .

...
...

. . .
...

. . .


.

Properties of DiagP are analogous to those of PT
n , n ∈ N.
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DiagP

p
(k+1)
k+1 > p

(k)
k+1 log p

(k)
k+1 > p

(k)
k log p

(k)
k .

Corollary (M, Tóth)

For each n ∈ N the set DiagP is not (R)-dense. Moreover,
Rd(DiagP) = ∅.

Theorem (M, Tóth)

We have ρ(DiagP) = 0. Moreover, if we put Sαdiag =
∑

p∈DiagP
1
pα

and Sαdiag (x) =
∑

p∈DiagP,p≤x
1
pα and assume that

p
(k−1)
k−1 ≤ x < p

(k)
k for some integer k ≥ 2, then

Sαdiag − Sαdiag (x) ≤
1(

p
(k)
k

)α

(
log p

(k)
k

)α(
log p

(k)
k

)α
−1
.
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Bounds for p(j)j

Theorem (M, Tóth)

For each k, j ∈ N with j ≥ k the following estimations hold:

(i) p
(j)
j ≥ p

(k)
k logj−k p

(k)
k ,

(ii) p
(j)
j ≥ p

(k)
k

∏j−k−1
i=0 (log p

(k)
k + i log log p

(k)
k ).

Theorem (M, Tóth)

There exists a k0 ∈ N such that for each k, j ∈ N0, j ≥ k ≥ k0, we
have

p
(j)
j ≤ p

(k)
k log2(j−k+1) log(j−k+1) p

(k)
k .
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Bounds for p(j)j

Corollary (M, Tóth)

There exists a k0 ∈ N such that for each k, j ∈ N, j ≥ k ≥ k0, we
have

p
(j)
j ≤ 8j−kp(k)k

j−k∏
i=1

(
log p

(k)
k + i log i log log p

(k)
k

)2
.

Corollary (M, Tóth)

We have

1 ≤ lim inf
j→+∞

log p
(j)
j

j log j
≤ lim sup

j→+∞

log p
(j)
j

j log j
≤ 2.
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Bounds for DiagP(x)

Corollary (M, Tóth)

Let n ∈ N and c ∈ (0, 1). Then, we have

DiagP(x) = o(log x) and DiagP(x) = ω(logc x)

as x → +∞. In particular,

logDiagP(x) ∼ log log x .

Corollary (M, Tóth)

The following inequalities hold for each n ∈ N.

1 ≤ lim inf
x→+∞

PT
n (x)

DiagP(x)
≤ lim sup

x→+∞

PT
n (x)

DiagP(x)
≤ 2.

In particular, DiagP(x) = θ
(
PT
n (x)

)
.
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Problems

Question

Is it true that
DiagP(x) ∼ PT

n (x)?

Answer: YES.

Question

Let n ∈ N. Are there real constants c > 0 and β such that

expPT
n (x) ∼ cx logβ x?

Question

Are there real constants c > 0 and β such that

expDiagP(x) ∼ cx logβ x?

Answer: NO.
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Solution of problems

Theorem (Żmija)

For each n ∈ N we have

PT
n (x) ∼ DiagP(x) ∼ log x

log log x
.
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Further problems

Question

Is it true that p
(k)
k+1 ∼ p

(k)
k as k → +∞?

NOT KNOWN

Conjecture

For every n ∈ N we have

lim
k→+∞

p
(k)
n

p
(k)
k

= 0.

Proof (Sanna).

Let k > pn. Then

0 <
p
(k)
n

p
(k)
k

<
p
(k)
n

p
(k)
pn

<
p
(k)
n

p
(k+1)
n

<
1

log p
(k)
n

.
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<
p
(k)
n

p
(k)
pn

<
p
(k)
n

p
(k+1)
n

<
1

log p
(k)
n

.
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Further study

A = {a1 < a2 < a3 < ...}, an ∼ nφ(n),

where φ : [1,+∞)→ [1,+∞) is non-decreasing and such that:

φ(xφ(x)) ∼ φ(x),
φ(x) = O(logc(x)) for some c ∈ R+.

The properties of the sets Ak , AT
n and DiagA, k ∈ N0, n ∈ N, are

analogous as for the sets Pk , PT
n and DiagP, respectively. (Joint

work in progress with Jan Šustek (Ostrava, Czech Republic) &
János T. Tóth).

Piotr Miska On interesting subsequences of the sequence of primes



Further study

A = {a1 < a2 < a3 < ...}, an ∼ nφ(n),

where φ : [1,+∞)→ [1,+∞) is non-decreasing and such that:

φ(xφ(x)) ∼ φ(x),
φ(x) = O(logc(x)) for some c ∈ R+.

The properties of the sets Ak , AT
n and DiagA, k ∈ N0, n ∈ N, are

analogous as for the sets Pk , PT
n and DiagP, respectively. (Joint
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Grazie mille!
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