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N=1{1,2,3,4,..}

No = NU {0}

R+ = (07+OO)
Let ACN. Then

A(x) =#(AN[1,x]), x>1,
R(A)={a/b:a,be A},
RY(A) = the set of accumulation points of R(A) C R,.

We say that A is (R)-dense if RY(A) = R,.
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Some history & motivation

o P is (R)-dense (Schinzel).
e Wide study of (R)-denseness of subsets of positive integers
(i.e. Salat, Strauch, Bukor, Téth, Filip, Garcia, Luca, Sanna)

@ The set of prime numbers in a fixed aritmetical progression
with coprime coefficients is (R)-dense (Garcia, Selhorst-Jones,
Poore, Simon, 2011).

o For each increasing and unbounded f : Ry — R there exists
an (R)-dense set A C N with limy_, ;1 A(x)/f(x) =0
(Hedman, Rose, 2009).
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Introduction

0) _ pS,k—H)

pn’ = n, = P for n € N, k € Np.
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k+1 K
Pr(7 = P = Pfan)
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py) =n, pit = pw  forneN, ke No.
k+1 K
Pr(7 = P = Pfan)

sz{pgk)<p§k)<---<p£k)<...} for k € Ny
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Introduction

(0) (k+1)

pn’ =n, pp = Py for n € N, k € Np.
Py = p = ply)
= {p(k) < pgk) - < pf,k) ...} for ke Ny
{p(l) < p,(72) - < p,(,k) ...} forneN
Pry1 G Py
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P
lim k+1(x)

x—+oo  Pi(x) =0
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Pry1(x)

li =
BLUS %
Theorem (M, Téth)
Let kK € Np. Then:
X
]Pk(X) A Pk X — 400,
log™ x
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Pry1(x)

li =
BLUS %
Theorem (M, Téth)
Let kK € Np. Then:
X
]Pk(X) A Pk X — 400,
log™ x

p,(,k) ~n Iogk n, n— 400,
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Pry1(x)

li =
BLUS %
Theorem (M, Téth)
Let kK € Np. Then:
X
]Pk(X) A Pk X — 400,
log™ x

p,(,k) ~n Iogk n, n— 400,

pf,i)l ~ pf,k), n — +o0.
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Fact (Starni 1995; Hedman, Rose, 2009)

Let A={a; <ap <---<ap,<...}CNsuch that

limy 4o #2 = 1. Then the set A is (R)-dense.
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Fact (Starni 1995; Hedman, Rose, 2009)

Let A={a; <ap <---<ap,<...}CNsuch that

limy 4o #2 = 1. Then the set A is (R)-dense.

Corollary (M, Téth)
The set Py is (R)-dense for each k € Np.
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neA
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Convergence exponent

p(A) = inf {a € [0, +00) : Zn_o‘ < +oo}

neA
Some properties:
e p(A) €[0,1],
o p(A) < p(B) forany AC B CN,
o if a > p(A), then > _,n™% < +oo0,
o if a < p(A), then >~ _,n~% = +oo0,

o p(A) =limsup,_, | I';’gga’;, where

A={a1 <ar<---<ap<...} (Pdlya, Szegd).
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Convergence exponent

p(A) = inf {a € [0, +00) : Zn_o‘ < +oo}

neA
Some properties:
e p(A) €[0,1],
o p(A) < p(B) forany AC B CN,
o if a > p(A), then > _,n™% < +oo0,
o if a < p(A), then >~ _,n~% = +oo0,

o p(A) =limsup,_, | I'(;’gg;;, where

A={a1 <apx<---<ap<...} (Pdlya, Szegd).

Theorem (M, Téth)

Let k € Ng. Then p(Px) = 1. Moreover,

> pck, 5 < F00 & k>2.
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2

pS,kH) ~ p( as k — +oo.

k
n)logp
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pf,kﬂ) ~ p,(,k) log p,(,k) as k — +oo.

Fact (Téth, Zsilinszki, 1995)

Let A={a1<a<---<ap<...} CNwith
liminf,, o0 222 = ¢ > 1. Then RY(A) N (%,¢) = .
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pf,kﬂ) ~ p,(,k) log p,(,k) as k — +oo.

Fact (Téth, Zsilinszki, 1995)

Let A={a1<a<---<ap<...} CNwith
liminf,, o0 222 = ¢ > 1. Then RY(A) N (%,¢) = .

Corollary (M, Téth)

For each n € N the set P is not (R)-dense. Moreover,
RY(PI) = @.
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The sets PT

Theorem (M, Téth)
Let n,m € N with n < m. Then,

PINnPL 40 «— meP].

Moreover, if m € Pl then P} c P] and

PI\PL = {p{",p?,..., oY)} where m=p{.

Piotr Miska On interesting subsequences of the sequence of primes



Theorem (M, Téth)
Let n,m € N with n < m. Then,

PINnPL 40 «— meP].

Moreover, if m € P], then PI c P] and

PI\PL = {p{",p?,..., oY)} where m=p{.

Theorem (M, Téth)

For any m,n € N, n < m we have
[PL0) =BT ()| € {juj + 1},

where p,(,j) <m< p,(,jH). Then,
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Bounds for py (n fixed)

Theorem (M, Téth)

For each n € N and k,j € Ny with j > k the following estimations

hold:
(i) p,(f) > pif log/ ¥ pil*,
(i) pS > pi) TPz (log p) + i log log piF)).

Piotr Miska On interesting subsequences of the sequence of primes



Bounds for py (n fixed)

Theorem (M, Téth)

For each n € N and k,j € Ny with j > k the following estimations

hold:
(i) p,(f) > pif log/ ¥ pil*,
(i) p n > k)HJ k= 1(Iogp$,)+/|og|ogp( )).

Theorem (M, Téth)

Let n € N. Then, there exists a kg € N such that for each k,j € N,
Jj > k > ko, we have

pd) < il logU—iett) loali=kt1) {10,
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Bounds for py (n fixed)
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Bounds for py (n fixed)

Corollary (M, Téth)

Let n € N. Then, there exists a kg € N such that for each k,j € N,
j > k > ko, we have

. . j_k
p) < 2~ 4p{I ] (1og ol + ilog ilog log )
i=1
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Bounds for py (n fixed)

Corollary (M, Téth)

Let n € N. Then, there exists a kg € N such that for each k,j € N,
j > k > ko, we have

pY) < ik plk) H (Iog Py + ilogilog Iogp,@) .
i=1

Corollary (M, Téth)

For each n € N we have

log pY) ~ jlogj, j— +oc.
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Bounds for P/ and convergence exponent for P/
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Bounds for P/ and convergence exponent for P/

Corollary (M, Téth)
Let n € N and c € (0,1). Then, we have

P/ (x) = o(log x) and P/ (x) = w(log® x)
as x — +o00. In particular,

logIPT(x) ~ loglog x.
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Bounds for P/ and convergence exponent for P/
Corollary (M, Téth)

Let n € N and c € (0,1). Then, we have

P! (x) = o(log x) and P (x) = w(log® x)
as x — +o00. In particular,

logIPT(x) ~ loglog x.

Theorem (M, Téth)

For every n € N we have p(PT) = 0. For each a > 0

sl — ZPE]PT — 0 as n — +o0o. Moreover, if we put

Sy%(x) = Y pePT p<x p and assume that p Y < x < p{ for

log p)
some integer k > 2, then S, ** — §]%(x) < 2 (°g” )

k @ k [e3 .
(pﬁ )) (log P )) -1
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DiaglP
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Let us consider the set DiagP = {p,((k) . k € N} of the elements on
the diagonal of the infinite matrix

OO,
s p@

P ken =1 =
p P P
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Let us consider the set DiagP = {p,((k) . k € N} of the elements on
the diagonal of the infinite matrix

ORI
s p@

oS Ngen = | =1
py) P pl?

Properties of DiagP are analogous to those of P, n € N.
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DiaglP

ing subsequences of the sequence of primes



(k+1) (k) (k) (k)

(k)
Pit1 > Pis1108 Py > Py

log p 7.

Piotr Miska On interesting subsequences of the sequence of primes



(k+1) (k) (k) (k)

(k)
Pit1 > Pis1108 Py > Py

log p 7.

Corollary (M, Téth)

For each n € N the set DiagP is not (R)-dense. Moreover,
R9(DiagP) = @.
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(k)

(1) S 500 Jog o) < p) jog plH),

Pit1 > Pis1108 Py > Py

Corollary (M, Téth)

For each n € N the set DiagP is not (R)-dense. Moreover,
R9(DiagP) = @.

Theorem (M, Téth)

We have p(DiagP’) = 0. Moreover, if we put Sg.. = >~ cpiagp pla
and 55 (X) = >~ peDiagh p<x pla and assume that

p,(<k__11) <x < p,(<k) for some integer k > 2, then

— 5%..(X) < (fopi)”
diag — (p‘((k))a (logp,((k))a_l'

@
Sdiag

v
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Bounds for pjj

Theorem (M, Téth)

For each k,j € N with j > k the following estimations hold:
(i) p (.i) > p(k) log/ ¥ p(k)

(i) pf’) > p) T2 (log pi + i loglog p).
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Bounds for pjj

Theorem (M, Téth)

For each k,j € N with j > k the following estimations hold:
(i) p (.i) > p(k) log/ ¥ p(k)

(i) pf’) > p) T2 (log pi + i loglog p).

Theorem (M, Téth)

There exists a kg € N such that for each k,j € Ny, j > k > kg, we
have

pj(j) < P;(<k) 2(j—k+1) log(j—k+1) P;(<k)~

log
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Bounds for pjj

Corollary (M, Téth)

There exists a kg € N such that for each k,j € N, j > k > kg, we
have

2
(’)<8f Py )H(Iogpk)—i—ilogiloglogp,((k))
i=1

Piotr Miska On interesting subsequences of the sequence of primes



Bounds for pjj

Corollary (M, Téth)

There exists a kg € N such that for each k,j € N, j > k > kg, we
have

: ) J 2
ij < 8f_kp,((k) H (Iog p,((k) + ilog i log log p,((k))

Corollary (M, Téth)

We have
log p¥) log pY’
1 < liminf L < limsup L/

jotoo jlogj T jsieo JlogJ
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Bounds for DiagP(x)

Corollary (M, Téth)
Let n € N and c € (0,1). Then, we have

DiagP(x) = o(log x) and DiagP(x) = w(log® x)
as x — +oc0. In particular,

log DiagP(x) ~ log log x.
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Bounds for DiagP(x)

Let n € N and c € (0,1). Then, we have

DiagP(x) = o(log x) and DiagP(x) = w(log® x)

as x — +oc0. In particular,

log DiagP(x) ~ log log x.

Corollary (M, Téth)

The following inequalities hold for each n € N.

T T
1< Iimian"—(X) < IimsupP”—(X)

x—+00 DiagP(x) ~ x—+oo DiagP(x) —

In particular, DiagP(x) = 6 (P] (x)).

v
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Is it true that

DiagP(x) ~ P (x)?
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Is it true that

DiagP(x) ~ P (x)?

Answer: YES.

Let n € N. Are there real constants ¢ > 0 and 3 such that

expP(x) ~ cxlog? x?
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Is it true that

DiagP(x) ~ P (x)?

Answer: YES.

Let n € N. Are there real constants ¢ > 0 and 3 such that

expP(x) ~ cxlog? x?

Are there real constants ¢ > 0 and 3 such that

exp DiagP(x) ~ cx log” x?
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Is it true that

DiagP(x) ~ P (x)?

Answer: YES.

Let n € N. Are there real constants ¢ > 0 and 3 such that

expP(x) ~ cxlog? x?

Are there real constants ¢ > 0 and 3 such that

exp DiagP(x) ~ cx log” x?

Answer: NO.
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Solution of problems

Theorem (Zmija)

For each n € N we have

. log x
PZ—(X) ~ DIag]PJ(X) ~ W
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Further problems

(k)

Is it true that p; /) ~ p,(f) as k — +o0?
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Further problems

(k)

Is it true that p; /) ~ p,(f) as k — +o0?

NOT KNOWN
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Further problems

(k)

Is it true that p; /) ~ p,(f) as k — +o0?

NOT KNOWN

For every n € N we have

_p
kliToo (k) =0
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Further problems

Is it true that p,(:r)l ~ p,(f) as k — +o0?

NOT KNOWN

For every n € N we have

_p
kliToo (k) =0

Proof (Sanna).
Let kK > pp. Then

0< pf,k) pﬁk) pﬁk) 1
(k) (k) (k+1) (k)

P’ Pp.  Pn log pn
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Further study

A={a1 <ap<az<..}, an~no(n),

where ¢ : [1,+00) — [1,+00) is non-decreasing and such that:
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Further study

A={a1 <ap<az<..}, an~no(n),

where ¢ : [1,+00) — [1,+00) is non-decreasing and such that:

o ¢(x¢(x)) ~ ¢(x),
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Further study

A={a1 <ap<az<..}, an~no(n),

where ¢ : [1,+00) — [1,+00) is non-decreasing and such that:

o ¢(xp(x)) ~ o(x),
o ¢(x) = O(log(x)) for some c € R;.
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Further study

A={a1 <ap<az<..}, an~no(n),

where ¢ : [1,+00) — [1,+00) is non-decreasing and such that:

o p(x¢(x)) ~ o(x),

o ¢(x) = O(log(x)) for some c € R;.
The properties of the sets Ax, Al and DiagA, k € Ng, n € N, are
analogous as for the sets P, PI and DiagP, respectively. (Joint

work in progress with Jan Sustek (Ostrava, Czech Republic) &
Jénos T. Téth).

Piotr Miska On interesting subsequences of the sequence of primes



Grazie millel

Piotr Miska On interesti

g subsequences of the sequence of primes



