On interesting subsequences of the sequence of primes

Piotr Miska Jagiellonian University in Kraków

4th Number Theory Meeting Torino, 24 Ottobre 2019 Collaborazione con János T. Tóth (János Sélye University in Komárno, Slovakia)

Piotr Miska On interesting subsequences of the sequence of primes

Some notation

Piotr Miska On interesting subsequences of the sequence of primes

Some notation

$$\begin{split} \mathbb{N} &= \{1,2,3,4,\ldots\}\\ \mathbb{N}_0 &= \mathbb{N} \cup \{0\}\\ \mathbb{R}_+ &= (0,+\infty) \end{split}$$

(日)

$$\mathbb{N} = \{1, 2, 3, 4, ...\}$$

 $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$
 $\mathbb{R}_+ = (0, +\infty)$

Let $A \subset \mathbb{N}$. Then

 $A(x) = \#(A \cap [1, x]), \quad x \ge 1,$ $R(A) = \{a/b : a, b \in A\},$ $R^d(A) =$ the set of accumulation points of $R(A) \subset \mathbb{R}_+.$

イロト 不得下 イヨト イヨト 二日

$$\mathbb{N} = \{1, 2, 3, 4, ...\}$$

 $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$
 $\mathbb{R}_+ = (0, +\infty)$

Let $A \subset \mathbb{N}$. Then

 $A(x) = \#(A \cap [1, x]), \quad x \ge 1,$ $R(A) = \{a/b : a, b \in A\},$ $R^d(A) =$ the set of accumulation points of $R(A) \subset \mathbb{R}_+.$ We say that A is (R)-dense if $R^d(A) = \mathbb{R}_+.$

イロト 不得 トイラト イラト・ラ

Some history & motivation

イロン 不同 とくほど 不良 とう

• \mathbb{P} is (*R*)-dense (Schinzel).

イロト イヨト イヨト イヨト

- \mathbb{P} is (*R*)-dense (Schinzel).
- Wide study of (*R*)-denseness of subsets of positive integers (i.e. Šalát, Strauch, Bukor, Tóth, Filip, Garcia, Luca, Sanna)

・ 何 ト ・ ヨ ト ・ ヨ ト

- \mathbb{P} is (*R*)-dense (Schinzel).
- Wide study of (*R*)-denseness of subsets of positive integers (i.e. Šalát, Strauch, Bukor, Tóth, Filip, Garcia, Luca, Sanna)
- The set of prime numbers in a fixed aritmetical progression with coprime coefficients is (*R*)-dense (Garcia, Selhorst-Jones, Poore, Simon, 2011).

イロト イポト イヨト

- \mathbb{P} is (*R*)-dense (Schinzel).
- Wide study of (*R*)-denseness of subsets of positive integers (i.e. Šalát, Strauch, Bukor, Tóth, Filip, Garcia, Luca, Sanna)
- The set of prime numbers in a fixed aritmetical progression with coprime coefficients is (*R*)-dense (Garcia, Selhorst-Jones, Poore, Simon, 2011).
- For each increasing and unbounded f : ℝ₊ → ℝ₊ there exists an (R)-dense set A ⊂ N with lim_{x→+∞} A(x)/f(x) = 0 (Hedman, Rose, 2009).

イロト 不得 トイラト イラト 二日

Piotr Miska On interesting subsequences of the sequence of primes

・ロン ・四 と ・ ヨ と ・

$$p_n^{(0)}=n, \quad p_n^{(k+1)}=p_{p_n^{(k)}} \quad \text{for } n\in\mathbb{N}, k\in\mathbb{N}_0.$$

$$p_n^{(0)} = n, \quad p_n^{(k+1)} = p_{p_n^{(k)}} \text{ for } n \in \mathbb{N}, k \in \mathbb{N}_0.$$

 $p_n^{(k+1)} = p_{p_n^{(k)}} = p_{p_n^{(k)}}^{(k)}$

・ロト ・御 ト ・ ヨト ・ ヨト

$$p_n^{(0)} = n, \quad p_n^{(k+1)} = p_{p_n^{(k)}} \text{ for } n \in \mathbb{N}, k \in \mathbb{N}_0.$$

 $p_n^{(k+1)} = p_{p_n^{(k)}} = p_{p_n}^{(k)}$

$$\mathbb{P}_{k} = \{p_{1}^{(k)} < p_{2}^{(k)} < \dots < p_{n}^{(k)} < \dots\} \text{ for } k \in \mathbb{N}_{0}$$

・ロン ・四 と ・ ヨ と

$$p_n^{(0)} = n, \quad p_n^{(k+1)} = p_{p_n^{(k)}} \quad \text{for } n \in \mathbb{N}, k \in \mathbb{N}_0.$$
$$p_n^{(k+1)} = p_{p_n^{(k)}} = p_{p_n}^{(k)}$$
$$\mathbb{P}_k = \{p_1^{(k)} < p_2^{(k)} < \dots < p_n^{(k)} < \dots\} \quad \text{for } k \in \mathbb{N}_0$$
$$\mathbb{P}_n^T = \{p_n^{(1)} < p_n^{(2)} < \dots < p_n^{(k)} < \dots\} \quad \text{for } n \in \mathbb{N}$$

・ロン ・四 と ・ ヨ と

$$p_n^{(0)} = n, \quad p_n^{(k+1)} = p_{p_n^{(k)}} \quad \text{for } n \in \mathbb{N}, k \in \mathbb{N}_0.$$

$$p_n^{(k+1)} = p_{p_n^{(k)}} = p_{p_n}^{(k)}$$

$$\mathbb{P}_k = \{ p_1^{(k)} < p_2^{(k)} < \dots < p_n^{(k)} < \dots \} \quad \text{for } k \in \mathbb{N}_0$$

$$\mathbb{P}_n^T = \{ p_n^{(1)} < p_n^{(2)} < \dots < p_n^{(k)} < \dots \} \quad \text{for } n \in \mathbb{N}$$

 $\mathbb{P}_{k+1} \subsetneq \mathbb{P}_k$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

The sets \mathbb{P}_k

The sets \mathbb{P}_k

 $\lim_{x \to +\infty} \frac{\mathbb{P}_{k+1}(x)}{\mathbb{P}_k(x)} = 0$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

$$\lim_{x \to +\infty} \frac{\mathbb{P}_{k+1}(x)}{\mathbb{P}_k(x)} = 0$$

Piotr Miska On interesting subsequences of the sequence of primes

E

$$\lim_{x \to +\infty} \frac{\mathbb{P}_{k+1}(x)}{\mathbb{P}_k(x)} = 0$$

Let $k \in \mathbb{N}_0$. Then:

イロン イボン イヨン イヨン 三日

$$\lim_{x \to +\infty} \frac{\mathbb{P}_{k+1}(x)}{\mathbb{P}_k(x)} = 0$$

Let $k \in \mathbb{N}_0$. Then:

$$\mathbb{P}_k(x) \sim \frac{x}{\log^k x}, \quad x \to +\infty,$$

E

$$\lim_{x \to +\infty} \frac{\mathbb{P}_{k+1}(x)}{\mathbb{P}_k(x)} = 0$$

Let $k \in \mathbb{N}_0$. Then:

$$\mathbb{P}_k(x) \sim \frac{x}{\log^k x}, \quad x \to +\infty,$$

$$p_n^{(k)} \sim n \log^k n, \quad n \to +\infty,$$

E

$$\lim_{x \to +\infty} \frac{\mathbb{P}_{k+1}(x)}{\mathbb{P}_k(x)} = 0$$

Let $k \in \mathbb{N}_0$. Then:

$$\mathbb{P}_k(x) \sim rac{x}{\log^k x}, \quad x o +\infty,$$

$$p_n^{(k)} \sim n \log^k n, \quad n \to +\infty,$$

$$p_{n+1}^{(k)} \sim p_n^{(k)}, \quad n \to +\infty.$$

イロン イボン イヨン イヨン 三日

The sets \mathbb{P}_k

Fact (Starni 1995; Hedman, Rose, 2009)

Let $A = \{a_1 < a_2 < \cdots < a_n < \dots\} \subset \mathbb{N}$ such that $\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = 1$. Then the set A is (R)-dense.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆ □ ◆ ○ ◆

Fact (Starni 1995; Hedman, Rose, 2009)

Let $A = \{a_1 < a_2 < \cdots < a_n < \dots\} \subset \mathbb{N}$ such that $\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = 1$. Then the set A is (R)-dense.

Corollary (M, Tóth)

The set \mathbb{P}_k is (*R*)-dense for each $k \in \mathbb{N}_0$.

(日) (問) (E) (E) (E)

Piotr Miska On interesting subsequences of the sequence of primes

イロト イヨト イヨト イヨト

$$\rho(A) = \inf \left\{ \alpha \in [0, +\infty) : \sum_{n \in A} n^{-\alpha} < +\infty \right\}$$

イロト イヨト イヨト イヨト

$$\rho(A) = \inf \left\{ \alpha \in [0, +\infty) : \sum_{n \in A} n^{-\alpha} < +\infty \right\}$$

Some properties:

・ロト ・回ト ・ヨト ・ヨト

$$\rho(A) = \inf \left\{ \alpha \in [0, +\infty) : \sum_{n \in A} n^{-\alpha} < +\infty \right\}$$

Some properties:

・ロト ・回ト ・ヨト ・ヨト

$$\rho(A) = \inf \left\{ \alpha \in [0, +\infty) : \sum_{n \in A} n^{-\alpha} < +\infty \right\}$$

Some properties:

- ρ(A) ∈ [0, 1],
- $ho(A) \leq
 ho(B)$ for any $A \subset B \subset \mathbb{N}$,

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

$$\rho(A) = \inf \left\{ \alpha \in [0, +\infty) : \sum_{n \in A} n^{-\alpha} < +\infty \right\}$$

- ρ(A) ∈ [0, 1],
- $ho(A) \leq
 ho(B)$ for any $A \subset B \subset \mathbb{N}$,
- if $\alpha > \rho(A)$, then $\sum_{n \in A} n^{-\alpha} < +\infty$,

イロト イボト イヨト イヨト

$$\rho(A) = \inf \left\{ \alpha \in [0, +\infty) : \sum_{n \in A} n^{-\alpha} < +\infty \right\}$$

- $ho(A) \in [0,1]$,
- $ho(A) \leq
 ho(B)$ for any $A \subset B \subset \mathbb{N}$,
- if $\alpha > \rho(A)$, then $\sum_{n \in A} n^{-\alpha} < +\infty$,
- if $\alpha < \rho(A)$, then $\sum_{n \in A} n^{-\alpha} = +\infty$,

イロト 不得 トイラト イラト 二日

$$\rho(A) = \inf \left\{ \alpha \in [0, +\infty) : \sum_{n \in A} n^{-\alpha} < +\infty \right\}$$

- ρ(A) ∈ [0, 1],
- $ho(A) \leq
 ho(B)$ for any $A \subset B \subset \mathbb{N}$,
- if $\alpha > \rho(A)$, then $\sum_{n \in A} n^{-\alpha} < +\infty$,
- if $\alpha <
 ho(A)$, then $\sum_{n \in A} n^{-lpha} = +\infty$,
- $\rho(A) = \limsup_{n \to +\infty} \frac{\log n}{\log a_n}$, where $A = \{a_1 < a_2 < \cdots < a_n < \dots\}$ (Pólya, Szegő).

・ 何 ト ・ ヨ ト ・ ヨ ト

$$\rho(A) = \inf \left\{ \alpha \in [0, +\infty) : \sum_{n \in A} n^{-\alpha} < +\infty \right\}$$

- $ho(A) \in [0,1]$,
- $ho(A) \leq
 ho(B)$ for any $A \subset B \subset \mathbb{N}$,
- if $\alpha >
 ho(A)$, then $\sum_{n \in A} n^{-lpha} < +\infty$,
- if $\alpha < \rho(A)$, then $\sum_{n \in A} n^{-\alpha} = +\infty$,

•
$$\rho(A) = \limsup_{n \to +\infty} \frac{\log n}{\log a_n}$$
, where
 $A = \{a_1 < a_2 < \cdots < a_n < \dots\}$ (Pólya, Szegő).

Theorem (M, Tóth)

Let
$$k \in \mathbb{N}_0$$
. Then $\rho(\mathbb{P}_k) = 1$. Moreover,
 $\sum_{p \in \mathbb{P}_k} \frac{1}{p} < +\infty \Leftrightarrow k \ge 2$.

The sets \mathbb{P}_n^T

イロン イロン イヨン イヨン 三日

 $p_n^{(k+1)} \sim p_n^{(k)} \log p_n^{(k)}$ as $k \to +\infty$.

(ロ) (部) (目) (日) (日) (の)

$$p_n^{(k+1)} \sim p_n^{(k)} \log p_n^{(k)}$$
 as $k \to +\infty$.

Fact (Tóth, Zsilinszki, 1995)

Let
$$A = \{a_1 < a_2 < \cdots < a_n < \dots\} \subset \mathbb{N}$$
 with
lim $\inf_{n \to +\infty} \frac{a_{n+1}}{a_n} = c > 1$. Then $R^d(A) \cap (\frac{1}{c}, c) = \emptyset$.

イロン 不良 とうほう 不良 とう

$$p_n^{(k+1)} \sim p_n^{(k)} \log p_n^{(k)}$$
 as $k \to +\infty$.

Fact (Tóth, Zsilinszki, 1995)

Let
$$A = \{a_1 < a_2 < \cdots < a_n < \dots\} \subset \mathbb{N}$$
 with
 $\liminf_{n \to +\infty} \frac{a_{n+1}}{a_n} = c > 1$. Then $R^d(A) \cap (\frac{1}{c}, c) = \emptyset$.

Corollary (M, Tóth)

For each $n \in \mathbb{N}$ the set \mathbb{P}_n^T is not (R)-dense. Moreover, $R^d(\mathbb{P}_n^T) = \emptyset$.

(日) (图) (문) (문) [

The sets \mathbb{P}_n^T

イロン イロン イヨン イヨン 三日

Ν

Theorem (M, Tóth)

Let $n, m \in \mathbb{N}$ with n < m. Then,

$$\mathbb{P}_n^T \cap \mathbb{P}_m^T \neq \emptyset \iff m \in \mathbb{P}_n^T.$$

Abreover, if $m \in \mathbb{P}_n^T$, then $\mathbb{P}_m^T \subset \mathbb{P}_n^T$ and
 $\mathbb{P}_n^T \setminus \mathbb{P}_m^T = \{p_n^{(1)}, p_n^{(2)}, \dots, p_n^{(k)}\}$ where $m = p_n^{(k)}$

イロン 不同 とくほど 不良 とう

Theorem (M, Tóth)

Let $n, m \in \mathbb{N}$ with n < m. Then,

$$\mathbb{P}_n^T \cap \mathbb{P}_m^T \neq \emptyset \iff m \in \mathbb{P}_n^T.$$

Moreover, if $m \in \mathbb{P}_n^T$, then $\mathbb{P}_m^T \subset \mathbb{P}_n^T$ and

$$\mathbb{P}_n^T \setminus \mathbb{P}_m^T = \{p_n^{(1)}, p_n^{(2)}, \dots, p_n^{(k)}\} \quad \text{where} \quad m = p_n^{(k)}$$

Theorem (M, Tóth)

For any $m, n \in \mathbb{N}$, n < m we have

$$\mathbb{P}_m^{\mathsf{T}}(x) - \mathbb{P}_n^{\mathsf{T}}(x) \bigg| \in \{j, j+1\},,$$

where $p_n^{(j)} \leq m < p_n^{(j+1)}$. Then,

$$\mathbb{P}_m^T(x) \sim \mathbb{P}_n^T(x)$$
.

Piotr Miska

On interesting subsequences of the sequence of primes

・ロト ・御 ト ・ ヨト ・ ヨト

Theorem (M, Tóth)

For each $n \in \mathbb{N}$ and $k, j \in \mathbb{N}_0$ with $j \ge k$ the following estimations hold:

(i) $p_n^{(j)} \ge p_n^{(k)} \log^{j-k} p_n^{(k)}$, (ii) $p_n^{(j)} \ge p_n^{(k)} \prod_{i=0}^{j-k-1} (\log p_n^{(k)} + i \log \log p_n^{(k)})$.

イロト イポト イヨト イヨト

Theorem (M, Tóth)

For each $n \in \mathbb{N}$ and $k, j \in \mathbb{N}_0$ with $j \ge k$ the following estimations hold:

(i)
$$p_n^{(j)} \ge p_n^{(k)} \log^{j-k} p_n^{(k)}$$
,
(ii) $p_n^{(j)} \ge p_n^{(k)} \prod_{i=0}^{j-k-1} (\log p_n^{(k)} + i \log \log p_n^{(k)})$.

Theorem (M, Tóth)

Let $n \in \mathbb{N}$. Then, there exists a $k_0 \in \mathbb{N}$ such that for each $k, j \in \mathbb{N}$, $j \ge k \ge k_0$, we have

$$p_n^{(j)} \leq p_n^{(k)} \log^{(j-k+1)\log(j-k+1)} p_n^{(k)}.$$

(日) (图) (문) (문) [

・ロト ・御 ト ・ ヨト ・ ヨト

Corollary (M, Tóth)

Let $n \in \mathbb{N}$. Then, there exists a $k_0 \in \mathbb{N}$ such that for each $k, j \in \mathbb{N}$, $j \ge k \ge k_0$, we have

$$p_n^{(j)} \le 2^{j-k} p_n^{(k)} \prod_{i=1}^{j-k} \left(\log p_n^{(k)} + i \log i \log \log p_n^{(k)} \right)$$

・ロト ・回ト ・ヨト ・ヨト

Corollary (M, Tóth)

Let $n \in \mathbb{N}$. Then, there exists a $k_0 \in \mathbb{N}$ such that for each $k, j \in \mathbb{N}$, $j \ge k \ge k_0$, we have

$$p_n^{(j)} \le 2^{j-k} p_n^{(k)} \prod_{i=1}^{j-k} \left(\log p_n^{(k)} + i \log i \log \log p_n^{(k)} \right)$$

Corollary (M, Tóth)

For each $n \in \mathbb{N}$ we have

$$\log p_n^{(j)} \sim j \log j, \quad j \to +\infty.$$

(日) (图) (문) (문) [

Bounds for \mathbb{P}_n^T and convergence exponent for \mathbb{P}_n^T

Piotr Miska On interesting subsequences of the sequence of primes

イロン 不同 とくほど 不良 とう

Bounds for \mathbb{P}_n^T and convergence exponent for \mathbb{P}_n^T

Corollary (M, Tóth)

Let $n \in \mathbb{N}$ and $c \in (0,1)$. Then, we have

$$\mathbb{P}_n^T(x) = o(\log x)$$
 and $\mathbb{P}_n^T(x) = \omega(\log^c x)$

as $x \to +\infty$. In particular,

 $\log \mathbb{P}_n^{\mathcal{T}}(x) \sim \log \log x.$

イロト イヨト イヨト イヨト

Bounds for \mathbb{P}_n^T and convergence exponent for \mathbb{P}_n^T

Corollary (M, Tóth)

Let $n \in \mathbb{N}$ and $c \in (0,1)$. Then, we have

$$\mathbb{P}_n^T(x) = o(\log x)$$
 and $\mathbb{P}_n^T(x) = \omega(\log^c x)$

as $x \to +\infty$. In particular,

 $\log \mathbb{P}_n^{\mathcal{T}}(x) \sim \log \log x.$

Theorem (M, Tóth)

For every $n \in \mathbb{N}$ we have $\rho(\mathbb{P}_n^T) = 0$. For each $\alpha > 0$ $S_n^{T,\alpha} = \sum_{p \in \mathbb{P}_n^T} \frac{1}{p^{\alpha}} \to 0$ as $n \to +\infty$. Moreover, if we put $S_n^{T,\alpha}(x) = \sum_{p \in \mathbb{P}_n^T, p \le x} \frac{1}{p^{\alpha}}$ and assume that $p_n^{(k-1)} \le x < p_n^{(k)}$ for some integer $k \ge 2$, then $S_n^{T,\alpha} - S_n^{T,\alpha}(x) \le \frac{1}{(p_n^{(k)})^{\alpha}} \frac{(\log p_n^{(k)})^{\alpha}}{(\log p_n^{(k)})^{\alpha} - 1}$.

イロン イロン イヨン イヨン 三日

Let us consider the set $\text{Diag}\mathbb{P} = \{p_k^{(k)} : k \in \mathbb{N}\}$ of the elements on the diagonal of the infinite matrix

$$[p_n^{(k)}]_{n,k\in\mathbb{N}} = \begin{bmatrix} p_1^{(1)} & p_1^{(2)} & \dots & p_1^{(k)} & \dots \\ p_2^{(1)} & p_2^{(2)} & \dots & p_2^{(k)} & \dots \\ \vdots & \vdots & \ddots & \vdots & \ddots \\ p_n^{(1)} & p_n^{(2)} & \dots & p_n^{(k)} & \dots \\ \vdots & \vdots & \ddots & \vdots & \ddots \end{bmatrix}$$

.

・ロト ・回ト ・ヨト ・ヨト

Let us consider the set $Diag \mathbb{P} = \{p_k^{(k)} : k \in \mathbb{N}\}$ of the elements on the diagonal of the infinite matrix

$$[p_n^{(k)}]_{n,k\in\mathbb{N}} = \begin{bmatrix} p_1^{(1)} & p_1^{(2)} & \dots & p_1^{(k)} & \dots \\ p_2^{(1)} & p_2^{(2)} & \dots & p_2^{(k)} & \dots \\ \vdots & \vdots & \ddots & \vdots & \ddots \\ p_n^{(1)} & p_n^{(2)} & \dots & p_n^{(k)} & \dots \\ \vdots & \vdots & \ddots & \vdots & \ddots \end{bmatrix}$$

Properties of Diag \mathbb{P} are analogous to those of \mathbb{P}_n^T , $n \in \mathbb{N}$.

イロト イボト イヨト イヨト

イロン イロン イヨン イヨン 三日

 $p_{k+1}^{(k+1)} > p_{k+1}^{(k)} \log p_{k+1}^{(k)} > p_k^{(k)} \log p_k^{(k)}.$

$$p_{k+1}^{(k+1)} > p_{k+1}^{(k)} \log p_{k+1}^{(k)} > p_k^{(k)} \log p_k^{(k)}.$$

Corollary (M, Tóth)

For each $n \in \mathbb{N}$ the set $\text{Diag}\mathbb{P}$ is not (*R*)-dense. Moreover, $R^d(\text{Diag}\mathbb{P}) = \emptyset$.

(日) (四) (王) (王) (王)

$$p_{k+1}^{(k+1)} > p_{k+1}^{(k)} \log p_{k+1}^{(k)} > p_k^{(k)} \log p_k^{(k)}.$$

Corollary (M, Tóth)

For each $n \in \mathbb{N}$ the set $\text{Diag}\mathbb{P}$ is not (*R*)-dense. Moreover, $R^d(\text{Diag}\mathbb{P}) = \emptyset$.

Theorem (M, Tóth)

We have
$$\rho(\text{Diag}\mathbb{P}) = 0$$
. Moreover, if we put $S_{diag}^{\alpha} = \sum_{p \in \text{Diag}\mathbb{P}} \frac{1}{p^{\alpha}}$
and $S_{diag}^{\alpha}(x) = \sum_{p \in \text{Diag}\mathbb{P}, p \leq x} \frac{1}{p^{\alpha}}$ and assume that
 $p_{k-1}^{(k-1)} \leq x < p_k^{(k)}$ for some integer $k \geq 2$, then
 $S_{diag}^{\alpha} - S_{diag}^{\alpha}(x) \leq \frac{1}{(p_k^{(k)})^{\alpha}} \frac{(\log p_k^{(k)})^{\alpha}}{(\log p_k^{(k)})^{\alpha} - 1}$.

イロト イヨト イヨト イヨト

Э

Bounds for $p_j^{(j)}$

・ロト ・回 ト ・ヨト ・ヨト

Э

Theorem (M, Tóth)

For each $k, j \in \mathbb{N}$ with $j \ge k$ the following estimations hold: (i) $p_j^{(j)} \ge p_k^{(k)} \log^{j-k} p_k^{(k)}$, (ii) $p_j^{(j)} \ge p_k^{(k)} \prod_{i=0}^{j-k-1} (\log p_k^{(k)} + i \log \log p_k^{(k)})$.

(日) (图) (문) (문) [

Theorem (M, Tóth)

For each $k, j \in \mathbb{N}$ with $j \ge k$ the following estimations hold: (i) $p_j^{(j)} \ge p_k^{(k)} \log^{j-k} p_k^{(k)}$, (ii) $p_j^{(j)} \ge p_k^{(k)} \prod_{i=0}^{j-k-1} (\log p_k^{(k)} + i \log \log p_k^{(k)})$.

Theorem (M, Tóth)

There exists a $k_0 \in \mathbb{N}$ such that for each $k, j \in \mathbb{N}_0$, $j \ge k \ge k_0$, we have

$$p_j^{(j)} \le p_k^{(k)} \log^{2(j-k+1)\log(j-k+1)} p_k^{(k)}.$$

イロト イポト イヨト イヨト 二日

Bounds for $p_j^{(j)}$

・ロト ・回 ト ・ヨト ・ヨト

Э

Corollary (M, Tóth)

There exists a $k_0 \in \mathbb{N}$ such that for each $k, j \in \mathbb{N}$, $j \ge k \ge k_0$, we have

$$p_j^{(j)} \le 8^{j-k} p_k^{(k)} \prod_{i=1}^{j-k} \left(\log p_k^{(k)} + i \log i \log \log p_k^{(k)} \right)^2$$

イロン 不同 とくほど 不良 とう

Corollary (M, Tóth)

There exists a $k_0 \in \mathbb{N}$ such that for each $k, j \in \mathbb{N}$, $j \ge k \ge k_0$, we have

$$p_j^{(j)} \le 8^{j-k} p_k^{(k)} \prod_{i=1}^{j-k} \left(\log p_k^{(k)} + i \log i \log \log p_k^{(k)} \right)^2$$

Corollary (M, Tóth)

We have

$$1 \leq \liminf_{j \to +\infty} \frac{\log p_j^{(j)}}{j \log j} \leq \limsup_{j \to +\infty} \frac{\log p_j^{(j)}}{j \log j} \leq 2.$$

イロン 不同 とくほど 不良 とう

Bounds for $Diag\mathbb{P}(x)$

・ロト ・回 ト ・ヨト ・ヨト

Corollary (M, Tóth)

Let $n \in \mathbb{N}$ and $c \in (0,1)$. Then, we have

```
Diag\mathbb{P}(x) = o(\log x) and Diag\mathbb{P}(x) = \omega(\log^c x)
```

as $x \to +\infty$. In particular,

 $\log \operatorname{Diag} \mathbb{P}(x) \sim \log \log x.$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆ □ ▶ ◆○ ♥

Corollary (M, Tóth)

Let $n \in \mathbb{N}$ and $c \in (0,1)$. Then, we have

```
Diag\mathbb{P}(x) = o(\log x) and Diag\mathbb{P}(x) = \omega(\log^c x)
```

as $x \to +\infty$. In particular,

 $\log \operatorname{Diag}\mathbb{P}(x) \sim \log \log x.$

Corollary (M, Tóth)

The following inequalities hold for each $n \in \mathbb{N}$.

$$1 \leq \liminf_{x \to +\infty} \frac{\mathbb{P}_n^{\mathcal{T}}(x)}{\mathsf{Diag}\mathbb{P}(x)} \leq \limsup_{x \to +\infty} \frac{\mathbb{P}_n^{\mathcal{T}}(x)}{\mathsf{Diag}\mathbb{P}(x)} \leq 2.$$

In particular, $\text{Diag}\mathbb{P}(x) = \theta \left(\mathbb{P}_n^T(x)\right)$.

イロン イロン イヨン イヨン 三日

Question

Is it true that

$$\mathsf{Diag}\mathbb{P}(x)\sim \mathbb{P}_n^{\mathsf{T}}(x)?$$

Piotr Miska On interesting subsequences of the sequence of primes

E

Question

Is it true that

$$\mathsf{Diag}\mathbb{P}(x)\sim \mathbb{P}_n^{\mathsf{T}}(x)?$$

Answer: YES.

イロン イボン イヨン イヨン 三日

Question

Is it true that

$$Diag \mathbb{P}(x) \sim \mathbb{P}_n^T(x)?$$

Answer: YES.

Question

Let $n \in \mathbb{N}$. Are there real constants c > 0 and β such that

$$\exp \mathbb{P}_n^{\mathcal{T}}(x) \sim cx \log^\beta x?$$

・ロン ・御 と ・ ヨン ・ ヨン

Question

Is it true that

$$Diag \mathbb{P}(x) \sim \mathbb{P}_n^T(x)?$$

Answer: YES.

Question

Let $n \in \mathbb{N}$. Are there real constants c > 0 and β such that

$$\exp \mathbb{P}_n^{\mathcal{T}}(x) \sim cx \log^\beta x?$$

Question

Are there real constants c > 0 and β such that

$$\exp \mathsf{Diag}\mathbb{P}(x) \sim cx \log^\beta x?$$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Problems

Question

Is it true that

$$Diag \mathbb{P}(x) \sim \mathbb{P}_n^T(x)?$$

Answer: YES.

Question

Let $n \in \mathbb{N}$. Are there real constants c > 0 and β such that

$$\exp \mathbb{P}_n^{\mathcal{T}}(x) \sim cx \log^\beta x?$$

Question

Are there real constants c > 0 and β such that

$$\exp \mathsf{Diag}\mathbb{P}(x) \sim cx \log^\beta x?$$

Answer: NO.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Solution of problems

Piotr Miska On interesting subsequences of the sequence of primes

Theorem (Żmija)

For each $n \in \mathbb{N}$ we have

$$\mathbb{P}_n^T(x) \sim \mathsf{Diag}\mathbb{P}(x) \sim \frac{\log x}{\log\log x}$$

Piotr Miska On interesting subsequences of the sequence of primes

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト

Question

Is it true that
$$p_{k+1}^{(k)} \sim p_k^{(k)}$$
 as $k \to +\infty$?

・ロト ・回 ト ・ヨト ・ヨト

Question

Is it true that
$$p_{k+1}^{(k)} \sim p_k^{(k)}$$
 as $k \to +\infty?$

NOT KNOWN

イロト イヨト イヨト イヨト

E

Question

Is it true that
$$p_{k+1}^{(k)} \sim p_k^{(k)}$$
 as $k \to +\infty$?

NOT KNOWN

Conjecture

For every $n \in \mathbb{N}$ we have

$$\lim_{k\to+\infty}\frac{p_n^{(k)}}{p_k^{(k)}}=0.$$

イロン 不同 とくほど 不良 とう

Question

Is it true that
$$p_{k+1}^{(k)} \sim p_k^{(k)}$$
 as $k \to +\infty$?

NOT KNOWN

Conjecture

For every $n \in \mathbb{N}$ we have

$$\lim_{k\to+\infty}\frac{p_n^{(k)}}{p_k^{(k)}}=0.$$

Proof (Sanna).

Let $k > p_n$. Then

$$0 < rac{p_n^{(k)}}{p_k^{(k)}} < rac{p_n^{(k)}}{p_{p_n}^{(k)}} < rac{p_n^{(k)}}{p_n^{(k+1)}} < rac{1}{\log p_n^{(k)}}.$$

Piotr Miska

On interesting subsequences of the sequence of primes

Further study

Piotr Miska On interesting subsequences of the sequence of primes

・ロト ・回ト ・ヨト ・ヨト

$$A = \{a_1 < a_2 < a_3 < ...\}, a_n \sim n\phi(n),$$

where $\phi: [1, +\infty) \rightarrow [1, +\infty)$ is non-decreasing and such that:

$$A = \{a_1 < a_2 < a_3 < \dots\}, \quad a_n \sim n\phi(n),$$

where $\phi : [1, +\infty) \rightarrow [1, +\infty)$ is non-decreasing and such that:
• $\phi(x\phi(x)) \sim \phi(x),$

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト

$$A = \{a_1 < a_2 < a_3 < ...\}, \quad a_n \sim n\phi(n),$$

where $\phi : [1, +\infty) \to [1, +\infty)$ is non-decreasing and such that: • $\phi(x\phi(x)) \sim \phi(x)$,

•
$$\phi(x) = O(\log^{c}(x))$$
 for some $c \in \mathbb{R}_{+}$.

イロト 不同 とうほう 不同 とう

$$A = \{a_1 < a_2 < a_3 < \ldots\}, \quad a_n \sim n\phi(n),$$

where $\phi:[1,+\infty)\to [1,+\infty)$ is non-decreasing and such that:

- $\phi(x\phi(x)) \sim \phi(x)$,
- $\phi(x) = O(\log^{c}(x))$ for some $c \in \mathbb{R}_{+}$.

The properties of the sets A_k , A_n^T and DiagA, $k \in \mathbb{N}_0$, $n \in \mathbb{N}$, are analogous as for the sets \mathbb{P}_k , \mathbb{P}_n^T and Diag \mathbb{P} , respectively. (Joint work in progress with Jan Šustek (Ostrava, Czech Republic) & János T. Tóth).

イロト 不得 トイヨト イヨト

Grazie mille!

Piotr Miska On interesting subsequences of the sequence of primes