Drinfeld cusp forms of prime level: structure and slopes

Maria Valentino

4th Number Theory Meeting - Torino Università di Torino, 24-25/10/2019

Maria Valentino

Drinfeld cusp forms of prime level

24/10/2019 1 / 11

(日) (四) (三) (三) (三)

 $N,k\in\mathbb{N}_{\geqslant0},\;p\in\mathbb{Z}$ prime

 $S_k(\Gamma_0(N))$ cusp forms of level N and weight k

Hecke operators \mathbf{T}_p , $p \in \mathbb{Z}$ if $p \nmid N$

Atkin-Lehner operator \mathbf{U}_p if p|N.

Fourier expansion $f = \sum_{n \ge 1} a_n(f)q^n$, $a_n(f) \in \mathbb{C}$.

Fix $p \neq N$, $f \in S_k(\Gamma_0(pN))$ eigenform, then $\mathbf{U}_p f = a_p(f) f$.

The *p*-slope of f is $v_p(a_p(f))$.

We have $S_k(\Gamma_0(N)) \hookrightarrow S_k(\Gamma_0(pN))$ via maps

 $\delta_1, \delta_p : S_k(\Gamma_0(N)) \hookrightarrow S_k(\Gamma_0(pN))$

 $\delta_1(f)(z) = f(z)$ and $\delta_p(f)(z) = f(pz)$.

Oldforms: all cusp forms generated by $Im(\delta_1)$ and $Im(\delta_p)$.

Newforms: orthogonal complement of oldforms w.r.t. the Petersson inner product.

Drinfeld modular forms

 $N,k\in\mathbb{N}_{\geqslant0},\;p\in\mathbb{Z}$ prime

 $S_k(\Gamma_0(N))$ cusp forms of level N and weight k

Hecke operators \mathbf{T}_p , $p \in \mathbb{Z}$ if $p \nmid N$

Atkin-Lehner operator \mathbf{U}_p if p|N.

Fourier expansion $f = \sum_{n \ge 1} a_n(f)q^n$, $a_n(f) \in \mathbb{C}$.

Fix $p \neq N$, $f \in S_k(\Gamma_0(pN))$ eigenform, then $\mathbf{U}_p f = a_p(f) f$.

The *p*-slope of f is $v_p(a_p(f))$.

We have $S_k(\Gamma_0(N)) \hookrightarrow S_k(\Gamma_0(pN))$ via maps

 $\delta_1, \delta_p : S_k(\Gamma_0(N)) \hookrightarrow S_k(\Gamma_0(pN))$

 $\delta_1(f)(z) = f(z)$ and $\delta_p(f)(z) = f(pz)$.

Oldforms: all cusp forms generated by $Im(\delta_1)$ and $Im(\delta_p)$.

Newforms: orthogonal complement of old-forms w.r.t. the Petersson inner product.

Drinfeld modular forms

$$\begin{array}{ccccc} \mathbb{Q} & \leftrightarrow & K = \mathbb{F}_q(t) \\ \mathbb{Z} & \leftrightarrow & \mathcal{O} = \mathbb{F}_q[t] \\ \mathbb{C} & \leftrightarrow & \mathbb{C}_{\infty} = \widehat{K}_{\infty}, \ \infty = \frac{1}{t} \\ SL_2(\mathbb{Z}) & \leftrightarrow & GL_2(\mathcal{O}) \\ \mathcal{H} & \leftrightarrow & \Omega := \mathbb{P}^1(\mathbb{C}_{\infty}) - \mathbb{P}^1(K_{\infty}) \\ \overline{\mathcal{H}}_{\Gamma} & \leftrightarrow & \overline{\Omega}_{\Gamma} := \Omega \cup \{\text{cusps, i.e. } \Gamma \setminus \mathbb{P}^1(K)\} \end{array}$$

 $N,k\in\mathbb{N}_{\geqslant0},\;p\in\mathbb{Z}$ prime

 $S_k(\Gamma_0(N))$ cusp forms of level N and weight k

Hecke operators \mathbf{T}_p , $p \in \mathbb{Z}$ if $p \nmid N$

Atkin-Lehner operator \mathbf{U}_p if p|N.

Fourier expansion
$$f = \sum_{n \ge 1} a_n(f)q^n$$
, $a_n(f) \in \mathbb{C}$.

Fix $p \neq N$, $f \in S_k(\Gamma_0(pN))$ eigenform, then $\mathbf{U}_p f = a_p(f) f$.

The *p*-slope of f is $v_p(a_p(f))$.

We have $S_k(\Gamma_0(N)) \hookrightarrow S_k(\Gamma_0(pN))$ via maps

 $\delta_1, \delta_p : S_k(\Gamma_0(N)) \hookrightarrow S_k(\Gamma_0(pN))$

 $\delta_1(f)(z) = f(z)$ and $\delta_p(f)(z) = f(pz)$.

Oldforms: all cusp forms generated by $Im(\delta_1)$ and $Im(\delta_p)$.

Newforms: orthogonal complement of oldforms w.r.t. the Petersson inner product.

Drinfeld modular forms

For $\gamma = \begin{pmatrix} a \\ c \\ d \end{pmatrix} \in GL_2(K_{\infty}), k, m \in \mathbb{Z} \text{ and } \varphi : \Omega \to \mathbb{C}_{\infty}$, we define

$$(\varphi|_{k,m}\gamma)(z) \coloneqq \varphi(\gamma z)(\det \gamma)^m (cz+d)^{-k}.$$

Let Γ be any congruence subgroup of $GL_2(\mathcal{O})$.

 $N,k\in\mathbb{N}_{\geqslant0},\;p\in\mathbb{Z}$ prime

 $S_k(\Gamma_0(N))$ cusp forms of level N and weight k

Hecke operators \mathbf{T}_p , $p \in \mathbb{Z}$ if $p \nmid N$

Atkin-Lehner operator \mathbf{U}_p if p|N.

Fourier expansion
$$f = \sum_{n \ge 1} a_n(f)q^n$$
, $a_n(f) \in \mathbb{C}$.

Fix $p \neq N$, $f \in S_k(\Gamma_0(pN))$ eigenform, then $\mathbf{U}_p f = a_p(f) f$.

The *p*-slope of f is $v_p(a_p(f))$.

We have $S_k(\Gamma_0(N)) \hookrightarrow S_k(\Gamma_0(pN))$ via maps

 $\delta_1, \delta_p : S_k(\Gamma_0(N)) \hookrightarrow S_k(\Gamma_0(pN))$

 $\delta_1(f)(z) = f(z)$ and $\delta_p(f)(z) = f(pz)$.

Oldforms: all cusp forms generated by $Im(\delta_1)$ and $Im(\delta_p)$.

Newforms: orthogonal complement of old-forms w.r.t. the Petersson inner product.

Drinfeld modular forms

$$\begin{array}{cccc} \mathbb{Q} & \leftrightarrow & K = \mathbb{F}_q(t) \\ \mathbb{Z} & \leftrightarrow & \mathcal{O} = \mathbb{F}_q[t] \\ \mathbb{C} & \leftrightarrow & \mathbb{C}_{\infty} = \overline{\widehat{K}}_{\infty}, \ \infty = \frac{1}{t} \\ SL_2(\mathbb{Z}) & \leftrightarrow & GL_2(\mathcal{O}) \\ \mathcal{H} & \leftrightarrow & \Omega \coloneqq \mathbb{P}^1(\mathbb{C}_{\infty}) - \mathbb{P}^1(K_{\infty}) \\ \overline{\mathcal{H}}_{\Gamma} & \leftrightarrow & \overline{\Omega}_{\Gamma} \coloneqq \Omega \cup \{\text{cusps, i.e. } \Gamma \setminus \mathbb{P}^1(K)\} \end{array}$$

For $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(K_{\infty}), \ k, m \in \mathbb{Z} \text{ and } \varphi : \Omega \to \mathbb{C}_{\infty}$, we define

$$(\varphi|_{k,m}\gamma)(z) \coloneqq \varphi(\gamma z)(\det \gamma)^m (cz+d)^{-k}.$$

Let Γ be any congruence subgroup of $GL_2(\mathcal{O})$.

Definition

A rigid analytic function $\varphi: \Omega \to \mathbb{C}_{\infty}$ is called a Drinfeld modular form of weight k and type m for Γ if

• φ is holomorphic on Ω and at all cusps;

イロト イヨト イヨト イヨト

• $(\varphi|_{k,m}\gamma)(z) = \varphi(z) \quad \forall \gamma \in \Gamma$

A Drinfeld modular form φ is called a cusp form if it vanishes at all cusps.

 $N,k\in\mathbb{N}_{\geqslant0},\;p\in\mathbb{Z}$ prime

 $S_k(\Gamma_0(N))$ cusp forms of level N and weight k

Hecke operators \mathbf{T}_p , $p \in \mathbb{Z}$ if $p \nmid N$

Atkin-Lehner operator \mathbf{U}_p if p|N.

Fourier expansion $f = \sum_{n \ge 1} a_n(f)q^n$, $a_n(f) \in \mathbb{C}$.

Fix $p \neq N$, $f \in S_k(\Gamma_0(pN))$ eigenform, then $\mathbf{U}_p f = a_p(f) f$.

The *p*-slope of f is $v_p(a_p(f))$.

We have $S_k(\Gamma_0(N)) \hookrightarrow S_k(\Gamma_0(pN))$ via maps

 $\delta_1, \delta_p : S_k(\Gamma_0(N)) \hookrightarrow S_k(\Gamma_0(pN))$

 $\delta_1(f)(z) = f(z)$ and $\delta_p(f)(z) = f(pz)$.

Oldforms: all cusp forms generated by $Im(\delta_1)$ and $Im(\delta_p)$.

Newforms: orthogonal complement of oldforms w.r.t. the Petersson inner product.

Drinfeld modular forms

 $N,k\in\mathbb{N}_{\geqslant0},\;p\in\mathbb{Z}$ prime

 $S_k(\Gamma_0(N))$ cusp forms of level N and weight k

Hecke operators \mathbf{T}_p , $p \in \mathbb{Z}$ if $p \nmid N$

Atkin-Lehner operator \mathbf{U}_p if p|N.

Fourier expansion $f = \sum_{n \ge 1} a_n(f)q^n$, $a_n(f) \in \mathbb{C}$.

Fix $p \neq N$, $f \in S_k(\Gamma_0(pN))$ eigenform, then $\mathbf{U}_p f = a_p(f) f$.

The *p*-slope of f is $v_p(a_p(f))$.

We have $S_k(\Gamma_0(N)) \hookrightarrow S_k(\Gamma_0(pN))$ via maps

 $\delta_1, \delta_p : S_k(\Gamma_0(N)) \hookrightarrow S_k(\Gamma_0(pN))$

 $\delta_1(f)(z) = f(z)$ and $\delta_p(f)(z) = f(pz)$.

Oldforms: all cusp forms generated by $Im(\delta_1)$ and $Im(\delta_p)$.

Newforms: orthogonal complement of oldforms w.r.t. the Petersson inner product.

Drinfeld modular forms

Let \mathfrak{m} be an ideal in $\mathcal{O} = \mathbb{F}_q[t]$.

Drinfeld cusp forms: $S^1_{k,m}(\Gamma_0(\mathfrak{m}))$ finite dim. \mathbb{C}_{∞} -vector space;

 $N, k \in \mathbb{N}_{\geq 0}, p \in \mathbb{Z}$ prime

 $S_k(\Gamma_0(N))$ cusp forms of level N and weight k

Hecke operators $\mathbf{T}_p, p \in \mathbb{Z}$ if $p \nmid N$

Atkin-Lehner operator \mathbf{U}_p if p|N.

Fourier expansion $f = \sum_{n \ge 1} a_n(f)q^n$, $a_n(f) \in \mathbb{C}$. Hecke operators \mathbf{T}_p if $p \neq \mathfrak{m}$

Fix $p \neq N$, $f \in S_k(\Gamma_0(pN))$ eigenform, then $\mathbf{U}_{p}f = a_{p}(f)f.$

The *p*-slope of f is $v_n(a_n(f))$.

We have $S_k(\Gamma_0(N)) \hookrightarrow S_k(\Gamma_0(pN))$ via maps

 $\delta_1, \delta_p: S_k(\Gamma_0(N)) \hookrightarrow S_k(\Gamma_0(pN))$

 $\delta_1(f)(z) = f(z)$ and $\delta_p(f)(z) = f(pz)$.

Oldforms: all cusp forms generated by $Im(\delta_1)$ and $Im(\delta_p)$.

Newforms: orthogonal complement of oldforms w.r.t. the Petersson inner product.

Drinfeld modular forms

Let \mathfrak{m} be an ideal in $\mathcal{O} = \mathbb{F}_q[t]$.

 $S^1_{k,m}(\Gamma_0(\mathfrak{m}))$ Drinfeld cusp forms: finite dim. \mathbb{C}_{∞} -vector space;

Fix $\mathfrak{p} = (P_d)$ with $P_d \in \mathcal{O}$ prime of degree d and assume $\mathfrak{p} \neq \mathfrak{m}$

$$\mathbf{T}_{\mathfrak{p}}(\varphi) \coloneqq P_{d}^{k-m}(\varphi|_{k,m} \begin{pmatrix} P_{d} & 0\\ 0 & 1 \end{pmatrix})(z) + P_{d}^{k-m} \sum_{\substack{Q \in \mathcal{O} \\ \deg Q \leq d}} (\varphi|_{k,m} \begin{pmatrix} 1 & Q\\ 0 & P_{d} \end{pmatrix})(z)$$

(日) (四) (王) (王) (王)

 $N, k \in \mathbb{N}_{\geq 0}, p \in \mathbb{Z}$ prime

 $S_k(\Gamma_0(N))$ cusp forms of level N and weight k

Hecke operators $\mathbf{T}_p, p \in \mathbb{Z}$ if $p \nmid N$

Atkin-Lehner operator \mathbf{U}_p if p|N.

Fourier expansion $f = \sum_{n \ge 1} a_n(f)q^n$, $a_n(f) \in \mathbb{C}$. Hecke operators \mathbf{T}_p if $p \neq \mathfrak{m}$

Fix $p \neq N$, $f \in S_k(\Gamma_0(pN))$ eigenform, then $\mathbf{U}_{p}f = a_{p}(f)f.$

The *p*-slope of f is $v_n(a_n(f))$.

We have $S_k(\Gamma_0(N)) \hookrightarrow S_k(\Gamma_0(pN))$ via maps

 $\delta_1, \delta_p: S_k(\Gamma_0(N)) \hookrightarrow S_k(\Gamma_0(pN))$

 $\delta_1(f)(z) = f(z)$ and $\delta_p(f)(z) = f(pz)$. *Oldforms*: all cusp forms generated by $Im(\delta_1)$

and $Im(\delta_p)$.

Newforms: orthogonal complement of oldforms w.r.t. the Petersson inner product.

Drinfeld modular forms

Let \mathfrak{m} be an ideal in $\mathcal{O} = \mathbb{F}_q[t]$.

 $S^1_{k-m}(\Gamma_0(\mathfrak{m}))$ Drinfeld cusp forms: finite dim. \mathbb{C}_{∞} -vector space;

Fix $\mathfrak{p} = (P_d)$ with $P_d \in \mathcal{O}$ prime of degree d and assume $\mathfrak{p} \neq \mathfrak{m}$

$$\mathbf{T}_{\mathfrak{p}}(\varphi) \coloneqq P_{d}^{k-m}(\varphi|_{k,m} \begin{pmatrix} P_{d} & 0\\ 0 & 1 \end{pmatrix})(z) + P_{d}^{k-m} \sum_{\substack{Q \in \mathcal{O} \\ \deg Q \leq d}} (\varphi|_{k,m} \begin{pmatrix} 1 & Q\\ 0 & P_{d} \end{pmatrix})(z)$$

Atkin-Lehner operator $\mathbf{U}_{\mathfrak{p}}$ if the level is \mathfrak{pm}

$$\mathbf{U}_{\mathfrak{p}}(\varphi) \coloneqq P_d^{k-m} \sum_{\substack{Q \in \mathcal{O} \\ \deg Q < d}} (\varphi|_{k,m} \begin{pmatrix} 1 & Q \\ 0 & P_d \end{pmatrix})(z)$$

 $N, k \in \mathbb{N}_{\geq 0}, p \in \mathbb{Z}$ prime

 $S_k(\Gamma_0(N))$ cusp forms of level N and weight k

Hecke operators $\mathbf{T}_p, p \in \mathbb{Z}$ if $p \nmid N$

Atkin-Lehner operator \mathbf{U}_p if p|N.

Fourier expansion $f = \sum_{n \ge 1} a_n(f)q^n$, $a_n(f) \in \mathbb{C}$. Hecke operators $\mathbf{T}_{\mathfrak{p}}$ if $\mathfrak{p} \neq \mathfrak{m}$

Fix $p \neq N$, $f \in S_k(\Gamma_0(pN))$ eigenform, then $\mathbf{U}_{p}f = a_{p}(f)f.$

The *p*-slope of f is $v_n(a_n(f))$.

We have $S_k(\Gamma_0(N)) \hookrightarrow S_k(\Gamma_0(pN))$ via maps

 $\delta_1, \delta_p: S_k(\Gamma_0(N)) \hookrightarrow S_k(\Gamma_0(pN))$

 $\delta_1(f)(z) = f(z)$ and $\delta_p(f)(z) = f(pz)$.

Oldforms: all cusp forms generated by $Im(\delta_1)$ and $Im(\delta_p)$.

orthogonal complement of old-Newforms: forms w.r.t. the Petersson inner product.

Drinfeld modular forms

Let \mathfrak{m} be an ideal in $\mathcal{O} = \mathbb{F}_q[t]$.

 $S^1_{km}(\Gamma_0(\mathfrak{m}))$ Drinfeld cusp forms: finite dim. \mathbb{C}_{∞} -vector space;

Fix $\mathfrak{p} = (P_d)$ with $P_d \in \mathcal{O}$ prime of degree d and assume $\mathfrak{p} \neq \mathfrak{m}$

$$\mathbf{T}_{\mathfrak{p}}(\varphi) \coloneqq P_{d}^{k-m}(\varphi|_{k,m} \begin{pmatrix} P_{d} & 0\\ 0 & 1 \end{pmatrix})(z) + P_{d}^{k-m} \sum_{\substack{Q \in \mathcal{O} \\ \deg Q < d}} (\varphi|_{k,m} \begin{pmatrix} 1 & Q\\ 0 & P_{d} \end{pmatrix})(z)$$

Atkin-Lehner operator $\mathbf{U}_{\mathfrak{p}}$ if the level is \mathfrak{pm}

$$\mathbf{U}_{\mathfrak{p}}(\varphi) \coloneqq P_d^{k-m} \sum_{\substack{Q \in \mathcal{O} \\ \deg Q < d}} (\varphi|_{k,m} \begin{pmatrix} 1 & Q \\ 0 & P_d \end{pmatrix})(z)$$

Fourier expansion (technical): depends on the Carlitz exponential e_C with period $\tilde{\pi}$

$$\varphi(z) = \sum_{n \ge 0} a_n(\varphi) \frac{1}{e_C(\tilde{\pi}z)^n}, \ a_n(\varphi) \in \mathbb{C}_{\infty}$$

(ロ) (四) (E) (E) (E) (E)

Drinfeld modular forms

(日) (종) (종) (종) (종) (종)

Drinfeld modular forms

イロト イヨト イヨト イヨト

• Old eigenforms come in pairs and the *p*-slopes of a pair add up to k - 1. Indeed, let $f \in S_k(\Gamma_0(N))$ be an eigenform, then \mathbf{U}_p acts on $< \delta_1(f), \delta_p(f) >$ with characteristic polynomial

$$X^2 - a_p(f)X - p^{k-1};$$

Drinfeld modular forms

イロト イヨト イヨト イヨト

• Old eigenforms come in pairs and the *p*-slopes of a pair add up to k - 1. Indeed, let $f \in S_k(\Gamma_0(N))$ be an eigenform, then \mathbf{U}_p acts on $< \delta_1(f), \delta_p(f) >$ with characteristic polynomial

$$X^2 - a_p(f)X - p^{k-1};$$

• The slope of a new eigenform is k/2 - 1;

Drinfeld modular forms

イロト イヨト イヨト イヨト

• Old eigenforms come in pairs and the *p*-slopes of a pair add up to k - 1. Indeed, let $f \in S_k(\Gamma_0(N))$ be an eigenform, then \mathbf{U}_p acts on $< \delta_1(f), \delta_p(f) >$ with characteristic polynomial

$$X^2 - a_p(f)X - p^{k-1};$$

- The slope of a new eigenform is k/2 1;
- Diagonalizability problems.

Drinfeld modular forms

イロト イヨト イヨト イヨト

• Old eigenforms come in pairs and the *p*-slopes of a pair add up to k - 1. Indeed, let $f \in S_k(\Gamma_0(N))$ be an eigenform, then \mathbf{U}_p acts on $< \delta_1(f), \delta_p(f) >$ with characteristic polynomial

 $X^{2} - a_{p}(f)X - p^{k-1};$

- The slope of a new eigenform is k/2 1;
- Diagonalizability problems.
- Existence of *p*-adic families of modular forms (e.g. Serre, Hida, Coleman).

Drinfeld modular forms

イロト イヨト イヨト イヨト

• Old eigenforms come in pairs and the *p*-slopes of a pair add up to k - 1. Indeed, let $f \in S_k(\Gamma_0(N))$ be an eigenform, then \mathbf{U}_p acts on $< \delta_1(f), \delta_p(f) >$ with characteristic polynomial

 $X^{2} - a_{p}(f)X - p^{k-1};$

- The slope of a new eigenform is k/2 1;
- Diagonalizability problems.
- Existence of *p*-adic families of modular forms (e.g. Serre, Hida, Coleman).
- Maeda's conjecture: The operator \mathbf{T}_p acting on $S_k(SL_2(\mathbb{Z}))$ has characteristic polynomial $P_{p,k}(X) = \prod(X - a_p(f))$, where f runs over a basis of eigenforms, which is irreducible in $\mathbb{Q}[X]$ and has full Galois group over \mathbb{Q} for every prime p.

• Old eigenforms come in pairs and the *p*-slopes of a pair add up to k - 1. Indeed, let $f \in S_k(\Gamma_0(N))$ be an eigenform, then U_p acts on $< \delta_1(f), \delta_p(f) >$ with characteristic polynomial

$$X^2 - a_p(f)X - p^{k-1};$$

- The slope of a new eigenform is k/2 1;
- Diagonalizability problems.
- Existence of *p*-adic families of modular forms (e.g. Serre, Hida, Coleman).
- Maeda's conjecture: The operator \mathbf{T}_p acting on $S_k(SL_2(\mathbb{Z}))$ has characteristic polynomial $P_{p,k}(X) = \prod(X - a_p(f))$, where f runs over a basis of eigenforms, which is irreducible in $\mathbb{Q}[X]$ and has full Galois group over \mathbb{Q} for every prime p.

Drinfeld modular forms

Problems:

• No more correspondance between eigenvalues of eigenforms and coefficients of the associated Fouries series.

(ロ) (日) (日) (日) (日)

• Old eigenforms come in pairs and the *p*-slopes of a pair add up to k - 1. Indeed, let $f \in S_k(\Gamma_0(N))$ be an eigenform, then U_p acts on $< \delta_1(f), \delta_p(f) >$ with characteristic polynomial

$$X^2 - a_p(f)X - p^{k-1};$$

- The slope of a new eigenform is k/2 1;
- Diagonalizability problems.
- Existence of *p*-adic families of modular forms (e.g. Serre, Hida, Coleman).
- Maeda's conjecture: The operator \mathbf{T}_p acting on $S_k(SL_2(\mathbb{Z}))$ has characteristic polynomial $P_{p,k}(X) = \prod(X - a_p(f))$, where f runs over a basis of eigenforms, which is irreducible in $\mathbb{Q}[X]$ and has full Galois group over \mathbb{Q} for every prime p.

Drinfeld modular forms

Problems:

- No more correspondance between eigenvalues of eigenforms and coefficients of the associated Fouries series.
- Analogue of Petersson inner product is not available.

(ロ) (日) (日) (日) (日)

Degeneracy Maps

$$\begin{split} \delta_{1}, \delta_{\mathfrak{p}} &: S_{k,m}^{1}(\Gamma_{0}(\mathfrak{m})) \to S_{k,m}^{1}(\Gamma_{0}(\mathfrak{m}\mathfrak{p})) \\ & \delta_{1}(\varphi) \coloneqq \varphi \\ \delta_{\mathfrak{p}}(\varphi) &\coloneqq (\varphi|_{k,m} \begin{pmatrix} P_{d} & 0 \\ 0 & 1 \end{pmatrix})(z) \text{, i.e., } (\delta_{\mathfrak{p}}(\varphi))(z) = P_{d}^{-m}\varphi(P_{d}z). \end{split}$$

Definition

The space of oldforms of level \mathfrak{m} , denoted by $S_{k,m}^{1,old}(\Gamma_0(\mathfrak{m}))$, is the subspace of $S_{k,m}^1(\Gamma_0(\mathfrak{m}))$ generated by the set

 $\{(\delta_1, \delta_{\mathfrak{p}})(\varphi_1, \varphi_2) : (\varphi_1, \varphi_2) \in S^1_{k,m}(\Gamma_0(\mathfrak{m}/\mathfrak{p}))^2, \text{ for all } \mathfrak{p}|\mathfrak{m}.\}$

(日) (四) (王) (王)

1

Degeneracy Maps

$$\begin{split} \delta_{1}, \delta_{\mathfrak{p}} &: S_{k,m}^{1}(\Gamma_{0}(\mathfrak{m})) \to S_{k,m}^{1}(\Gamma_{0}(\mathfrak{m}\mathfrak{p})) \\ & \delta_{1}(\varphi) \coloneqq \varphi \\ \delta_{\mathfrak{p}}(\varphi) &\coloneqq (\varphi \mid_{k,m} \begin{pmatrix} P_{d} & 0 \\ 0 & 1 \end{pmatrix})(z) \text{, i.e., } (\delta_{\mathfrak{p}}(\varphi))(z) = P_{d}^{-m}\varphi(P_{d}z). \end{split}$$

1

Definition

The space of oldforms of level \mathfrak{m} , denoted by $S_{k,m}^{1,old}(\Gamma_0(\mathfrak{m}))$, is the subspace of $S_{k,m}^1(\Gamma_0(\mathfrak{m}))$ generated by the set

$$\{(\delta_1, \delta_{\mathfrak{p}})(\varphi_1, \varphi_2) : (\varphi_1, \varphi_2) \in S^1_{k,m}(\Gamma_0(\mathfrak{m}/\mathfrak{p}))^2, \text{ for all } \mathfrak{p}|\mathfrak{m}.\}$$

Theorem (Bandini-V.)

Assume that $\mathfrak{p} + \mathfrak{m}$, then the map

$$(\delta_1, \delta_{\mathfrak{p}}) : S^1_{k,m}(\Gamma_0(\mathfrak{m}))^2 \to S^1_{k,m}(\Gamma_0(\mathfrak{m}\mathfrak{p}))$$
$$(\varphi_1, \varphi_2) \mapsto \delta_1\varphi_1 + \delta_{\mathfrak{p}}\varphi_2$$

is injective.

・ロト ・回ト ・モト ・モト

Degeneracy Maps

$$\begin{split} \delta_{1}, \delta_{\mathfrak{p}} &: S_{k,m}^{1}(\Gamma_{0}(\mathfrak{m})) \to S_{k,m}^{1}(\Gamma_{0}(\mathfrak{m}\mathfrak{p})) \\ & \delta_{1}(\varphi) \coloneqq \varphi \\ \delta_{\mathfrak{p}}(\varphi) \coloneqq (\varphi \mid_{k,m} \begin{pmatrix} P_{d} & 0 \\ 0 & 1 \end{pmatrix})(z) \text{, i.e., } (\delta_{\mathfrak{p}}(\varphi))(z) = P_{d}^{-m}\varphi(P_{d}z). \end{split}$$

Definition

The space of oldforms of level \mathfrak{m} , denoted by $S_{k,m}^{1,old}(\Gamma_0(\mathfrak{m}))$, is the subspace of $S_{k,m}^1(\Gamma_0(\mathfrak{m}))$ generated by the set

$$\{(\delta_1, \delta_{\mathfrak{p}})(\varphi_1, \varphi_2) : (\varphi_1, \varphi_2) \in S^1_{k,m}(\Gamma_0(\mathfrak{m}/\mathfrak{p}))^2, \text{ for all } \mathfrak{p}|\mathfrak{m}.\}$$

Theorem (Bandini-V.)

Assume that $\mathfrak{p} + \mathfrak{m}$, then the map

$$(\delta_1, \delta_{\mathfrak{p}}) : S^1_{k,m}(\Gamma_0(\mathfrak{m}))^2 \to S^1_{k,m}(\Gamma_0(\mathfrak{m}\mathfrak{p}))$$
$$(\varphi_1, \varphi_2) \mapsto \delta_1\varphi_1 + \delta_{\mathfrak{p}}\varphi_2$$

is injective. Moreover, we have an equality of sets

$$\{\text{Eigenvalues of } \mathbf{U}_{\mathfrak{p}}|_{S^{1,old}_{k,m}(\Gamma_0(\mathfrak{m}\mathfrak{p}))}\} = \{\text{Eigenvalues of } \mathbf{T}_{\mathfrak{p}}\} \cup \{0\}.$$

・ロト ・回ト ・モト ・モト

Now we focus on the case $\mathfrak{m} = (1)$. System of representatives for $\Gamma_0(\mathfrak{p})\backslash GL_2(\mathcal{O})$ given by

$$R = \left\{ Id, \begin{pmatrix} 0 & -1 \\ 1 & Q \end{pmatrix} \text{ s.t. } Q \in \mathcal{O} \text{ and } \deg Q < d \right\}.$$

Definition

We have the following maps defined on $S^1_{k,m}(\Gamma_0(\mathfrak{p}))$:

• the Fricke involution, which preserves the space $S^1_{k,m}(\Gamma_0(\mathfrak{p}))$, is represented by the matrix

$$\gamma_{\mathfrak{p}} \coloneqq \begin{pmatrix} 0 & -1 \\ P_d & 0 \end{pmatrix}$$

and defined by $\varphi^{Fr} = (\varphi|_{k,m}\gamma_{\mathfrak{p}});$

• the trace map is defined by

$$Tr: S^{1}_{k,m}(\Gamma_{0}(\mathfrak{p})) \to S^{1}_{k,m}(GL_{2}(\mathcal{O}))$$
$$\varphi \mapsto \sum_{\gamma \in R} (\varphi|_{k,m}\gamma)(z);$$

• the twisted trace map is defined by

$$Tr': S^{1}_{k,m}(\Gamma_{0}(\mathfrak{p})) \to S^{1}_{k,m}(GL_{2}(\mathcal{O}))$$
$$\varphi \mapsto Tr(\varphi^{Fr}).$$

・ロト ・回ト ・ヨト ・ヨト

The space of newforms of level \mathfrak{p} , denoted by $S_{k,m}^{1,new}(\Gamma_0(\mathfrak{p}))$ is given by $Ker(Tr) \cap Ker(Tr')$.

The space of newforms of level \mathfrak{p} , denoted by $S_{k,m}^{1,new}(\Gamma_0(\mathfrak{p}))$ is given by $Ker(Tr) \cap Ker(Tr')$.

Let $\varphi \in S^1_{k,m}(GL_2(\mathcal{O}))$ be such that $\mathbf{T}_{\mathfrak{p}}\varphi = \lambda \varphi$ with $\lambda \neq 0$. Then one can check that

$$\psi_{1} \coloneqq \delta_{1}\varphi - \frac{P_{d}^{k-m}}{\lambda}\delta_{\mathfrak{p}}\varphi \in Ker(Tr)$$
$$\psi_{2} \coloneqq \frac{P_{d}^{k-m}}{\lambda}\delta_{1}\varphi - P_{d}^{k-2m}\delta_{\mathfrak{p}}\varphi \in Ker(Tr')$$

(日) (四) (王) (王)

The space of newforms of level \mathfrak{p} , denoted by $S_{k,m}^{1,new}(\Gamma_0(\mathfrak{p}))$ is given by $Ker(Tr) \cap Ker(Tr')$.

Let $\varphi \in S^1_{k,m}(GL_2(\mathcal{O}))$ be such that $\mathbf{T}_{\mathfrak{p}}\varphi = \lambda\varphi$ with $\lambda \neq 0$. Then one can check that

$$\begin{split} \psi_1 &\coloneqq \delta_1 \varphi - \frac{P_d^{k-m}}{\lambda} \delta_p \varphi \ \in Ker(Tr) \\ \psi_2 &\coloneqq \frac{P_d^{k-m}}{\lambda} \delta_1 \varphi - P_d^{k-2m} \delta_p \varphi \ \in Ker(Tr') \end{split}$$

Theorem (Bandini-V.)

Let $\varphi \in S^1_{k,m}(\Gamma_0(\mathfrak{p}))$ be a new $\mathbf{U}_{\mathfrak{p}}$ -eigenform of eigenvalue λ , then $\lambda = \pm P_d^{k/2}$.

・ロト ・回ト ・ヨト ・ヨト

The space of newforms of level \mathfrak{p} , denoted by $S_{k,m}^{1,new}(\Gamma_0(\mathfrak{p}))$ is given by $Ker(Tr) \cap Ker(Tr')$.

Let $\varphi \in S^1_{k,m}(GL_2(\mathcal{O}))$ be such that $\mathbf{T}_{\mathfrak{p}}\varphi = \lambda \varphi$ with $\lambda \neq 0$. Then one can check that

$$\psi_{1} \coloneqq \delta_{1}\varphi - \frac{P_{d}^{k-m}}{\lambda} \delta_{\mathfrak{p}}\varphi \in Ker(Tr)$$
$$\psi_{2} \coloneqq \frac{P_{d}^{k-m}}{\lambda} \delta_{1}\varphi - P_{d}^{k-2m}\delta_{\mathfrak{p}}\varphi \in Ker(Tr')$$

Theorem (Bandini-V.)

Let $\varphi \in S^1_{k,m}(\Gamma_0(\mathfrak{p}))$ be a new $\mathbf{U}_{\mathfrak{p}}$ -eigenform of eigenvalue λ , then $\lambda = \pm P_d^{k/2}$. We have a direct sum decomposition $S^1_{k,m}(\Gamma_0(\mathfrak{p})) = S^{1,old}_{k,m}(\Gamma_0(\mathfrak{p})) \oplus S^{1,new}_{k,m}(\Gamma_0(\mathfrak{p}))$ if and only if the map $\mathcal{D} := Id - P_d^{k-2m}(Tr')^2$ is bijective.

The space of newforms of level \mathfrak{p} , denoted by $S_{k,m}^{1,new}(\Gamma_0(\mathfrak{p}))$ is given by $Ker(Tr) \cap Ker(Tr')$.

Let $\varphi \in S^1_{k,m}(GL_2(\mathcal{O}))$ be such that $\mathbf{T}_{\mathfrak{p}}\varphi = \lambda \varphi$ with $\lambda \neq 0$. Then one can check that

$$\psi_{1} \coloneqq \delta_{1}\varphi - \frac{P_{d}^{k-m}}{\lambda} \delta_{\mathfrak{p}}\varphi \in Ker(Tr)$$
$$\psi_{2} \coloneqq \frac{P_{d}^{k-m}}{\lambda} \delta_{1}\varphi - P_{d}^{k-2m}\delta_{\mathfrak{p}}\varphi \in Ker(Tr')$$

Theorem (Bandini-V.)

Let $\varphi \in S_{k,m}^1(\Gamma_0(\mathfrak{p}))$ be a new $\mathbf{U}_{\mathfrak{p}}$ -eigenform of eigenvalue λ , then $\lambda = \pm P_d^{k/2}$. We have a direct sum decomposition $S_{k,m}^1(\Gamma_0(\mathfrak{p})) = S_{k,m}^{1,old}(\Gamma_0(\mathfrak{p})) \oplus S_{k,m}^{1,new}(\Gamma_0(\mathfrak{p}))$ if and only if the map $\mathcal{D} := Id - P_d^{k-2m}(Tr')^2$ is bijective.

Conjectures (Special case $P_1 = t$)

•
$$S_{k,m}^{1}(\Gamma_{0}(t)) = S_{k,m}^{1,old}(\Gamma_{0}(t)) \oplus S_{k,m}^{1,new}(\Gamma_{0}(t));$$

The space of newforms of level \mathfrak{p} , denoted by $S_{k,m}^{1,new}(\Gamma_0(\mathfrak{p}))$ is given by $Ker(Tr) \cap Ker(Tr')$.

Let $\varphi \in S^1_{k,m}(GL_2(\mathcal{O}))$ be such that $\mathbf{T}_{\mathfrak{p}}\varphi = \lambda \varphi$ with $\lambda \neq 0$. Then one can check that

$$\psi_{1} \coloneqq \delta_{1}\varphi - \frac{P_{d}^{k-m}}{\lambda} \delta_{\mathfrak{p}}\varphi \in Ker(Tr)$$
$$\psi_{2} \coloneqq \frac{P_{d}^{k-m}}{\lambda} \delta_{1}\varphi - P_{d}^{k-2m}\delta_{\mathfrak{p}}\varphi \in Ker(Tr')$$

Theorem (Bandini-V.)

Let $\varphi \in S_{k,m}^1(\Gamma_0(\mathfrak{p}))$ be a new $\mathbf{U}_{\mathfrak{p}}$ -eigenform of eigenvalue λ , then $\lambda = \pm P_d^{k/2}$. We have a direct sum decomposition $S_{k,m}^1(\Gamma_0(\mathfrak{p})) = S_{k,m}^{1,old}(\Gamma_0(\mathfrak{p})) \oplus S_{k,m}^{1,new}(\Gamma_0(\mathfrak{p}))$ if and only if the map $\mathcal{D} := Id - P_d^{k-2m}(Tr')^2$ is bijective.

Conjectures (Special case $P_1 = t$)

•
$$S_{k,m}^{1}(\Gamma_{0}(t)) = S_{k,m}^{1,old}(\Gamma_{0}(t)) \oplus S_{k,m}^{1,new}(\Gamma_{0}(t));$$

• \mathbf{U}_t is diagonalizable $\iff q$ is odd or q is even and $\dim_{\mathbb{C}_{\infty}} S^{1,new}_{k,m}(\Gamma_0(t)) \leq 1;$

・ロト ・日ト ・ヨト ・ヨト

The space of newforms of level \mathfrak{p} , denoted by $S_{k,m}^{1,new}(\Gamma_0(\mathfrak{p}))$ is given by $Ker(Tr) \cap Ker(Tr')$.

Let $\varphi \in S_{k,m}^1(GL_2(\mathcal{O}))$ be such that $\mathbf{T}_{\mathfrak{p}}\varphi = \lambda\varphi$ with $\lambda \neq 0$. Then one can check that

$$\psi_{1} \coloneqq \delta_{1}\varphi - \frac{P_{d}^{k-m}}{\lambda} \delta_{\mathfrak{p}}\varphi \in Ker(Tr)$$
$$\psi_{2} \coloneqq \frac{P_{d}^{k-m}}{\lambda} \delta_{1}\varphi - P_{d}^{k-2m}\delta_{\mathfrak{p}}\varphi \in Ker(Tr')$$

Theorem (Bandini-V.)

Let $\varphi \in S_{k,m}^1(\Gamma_0(\mathfrak{p}))$ be a new $\mathbf{U}_{\mathfrak{p}}$ -eigenform of eigenvalue λ , then $\lambda = \pm P_d^{k/2}$. We have a direct sum decomposition $S_{k,m}^1(\Gamma_0(\mathfrak{p})) = S_{k,m}^{1,old}(\Gamma_0(\mathfrak{p})) \oplus S_{k,m}^{1,new}(\Gamma_0(\mathfrak{p}))$ if and only if the map $\mathcal{D} := Id - P_d^{k-2m}(Tr')^2$ is bijective.

Conjectures (Special case $P_1 = t$)

•
$$S_{k,m}^{1}(\Gamma_{0}(t)) = S_{k,m}^{1,old}(\Gamma_{0}(t)) \oplus S_{k,m}^{1,new}(\Gamma_{0}(t));$$

- \mathbf{U}_t is diagonalizable $\iff q$ is odd or q is even and $\dim_{\mathbb{C}_{\infty}} S^{1,new}_{k,m}(\Gamma_0(t)) \leq 1;$
- **T**_t is injective (in any positive characteristic);

・ロト ・日ト ・ヨト ・ヨト

The space of newforms of level \mathfrak{p} , denoted by $S_{k,m}^{1,new}(\Gamma_0(\mathfrak{p}))$ is given by $Ker(Tr) \cap Ker(Tr')$.

Let $\varphi \in S_{k,m}^1(GL_2(\mathcal{O}))$ be such that $\mathbf{T}_{\mathfrak{p}}\varphi = \lambda\varphi$ with $\lambda \neq 0$. Then one can check that

$$\psi_{1} \coloneqq \delta_{1}\varphi - \frac{P_{d}^{k-m}}{\lambda} \delta_{\mathfrak{p}}\varphi \in Ker(Tr)$$
$$\psi_{2} \coloneqq \frac{P_{d}^{k-m}}{\lambda} \delta_{1}\varphi - P_{d}^{k-2m}\delta_{\mathfrak{p}}\varphi \in Ker(Tr')$$

Theorem (Bandini-V.)

Let $\varphi \in S_{k,m}^1(\Gamma_0(\mathfrak{p}))$ be a new $\mathbf{U}_{\mathfrak{p}}$ -eigenform of eigenvalue λ , then $\lambda = \pm P_d^{k/2}$. We have a direct sum decomposition $S_{k,m}^1(\Gamma_0(\mathfrak{p})) = S_{k,m}^{1,old}(\Gamma_0(\mathfrak{p})) \oplus S_{k,m}^{1,new}(\Gamma_0(\mathfrak{p}))$ if and only if the map $\mathcal{D} := Id - P_d^{k-2m}(Tr')^2$ is bijective.

Conjectures (Special case $P_1 = t$)

•
$$S_{k,m}^{1}(\Gamma_{0}(t)) = S_{k,m}^{1,old}(\Gamma_{0}(t)) \oplus S_{k,m}^{1,new}(\Gamma_{0}(t));$$

- \mathbf{U}_t is diagonalizable $\iff q$ is odd or q is even and $\dim_{\mathbb{C}_{\infty}} S^{1,new}_{k,m}(\Gamma_0(t)) \leq 1;$
- **T**_t is injective (in any positive characteristic);

・ロト ・日ト ・ヨト ・ヨト

$$\mathcal{B} = \{ \mathbf{c}_j \mid 0 \leq j \leq k - 2. \}$$

The action of \mathbf{U}_t on this basis is given by

$$\begin{aligned} \mathbf{U}_{t}(\mathbf{c}_{j}) &= -(-t)^{j+1} \binom{k-2-j}{j} \mathbf{c}_{j} - t^{j+1} \sum_{h\neq 0} \left[\binom{k-2-j-h(q-1)}{-h(q-1)} \right] \\ &+ (-1)^{j+1} \binom{k-2-j-h(q-1)}{j} \mathbf{c}_{j+h(q-1)} \end{aligned}$$

$$\mathcal{B} = \{ \mathbf{c}_j \mid 0 \leq j \leq k - 2. \}$$

The action of \mathbf{U}_t on this basis is given by

$$\begin{aligned} \mathbf{U}_{t}(\mathbf{c}_{j}) &= -(-t)^{j+1} \binom{k-2-j}{j} \mathbf{c}_{j} - t^{j+1} \sum_{h\neq 0} \left[\binom{k-2-j-h(q-1)}{-h(q-1)} \right] \\ &+ (-1)^{j+1} \binom{k-2-j-h(q-1)}{j} \mathbf{c}_{j+h(q-1)} \end{aligned}$$

Let $C_j = \langle \mathbf{c}_s : s \equiv j \pmod{q-1} \rangle$ with $0 \leq j \leq q-2$, then the C_j are stable for the action of \mathbf{U}_t . Reordering the basis we have a block matrix which is diagonalizable \iff each block is.

$$\mathcal{B} = \{ \mathbf{c}_j \mid 0 \leq j \leq k - 2. \}$$

The action of \mathbf{U}_t on this basis is given by

$$\begin{aligned} \mathbf{U}_{t}(\mathbf{c}_{j}) &= -(-t)^{j+1} \binom{k-2-j}{j} \mathbf{c}_{j} - t^{j+1} \sum_{h\neq 0} \left[\binom{k-2-j-h(q-1)}{-h(q-1)} \right] \\ &+ (-1)^{j+1} \binom{k-2-j-h(q-1)}{j} \mathbf{c}_{j+h(q-1)} \end{aligned}$$

Let $C_j = \langle \mathbf{c}_s : s \equiv j \pmod{q-1} \rangle$ with $0 \leq j \leq q-2$, then the C_j are stable for the action of \mathbf{U}_t . Reordering the basis we have a block matrix which is diagonalizable \iff each block is.

Blocks arising from $S_{k,m}^1(\Gamma_0(t))$: there is a natural inclusion $S_{k,m}^1(\Gamma_0(t)) \hookrightarrow S_k^1(\Gamma_1(t))$ and the subspaces arising from $\Gamma_0(t)$ are those for $k \equiv 2(j+1) \pmod{q-1}$.

・ロト ・回ト ・モト ・モト

$$\mathcal{B} = \{ \mathbf{c}_j \mid 0 \leq j \leq k - 2. \}$$

The action of \mathbf{U}_t on this basis is given by

$$\begin{aligned} \mathbf{U}_{t}(\mathbf{c}_{j}) &= -(-t)^{j+1} \binom{k-2-j}{j} \mathbf{c}_{j} - t^{j+1} \sum_{h\neq 0} \left[\binom{k-2-j-h(q-1)}{-h(q-1)} \right] \\ &+ (-1)^{j+1} \binom{k-2-j-h(q-1)}{j} \mathbf{c}_{j+h(q-1)} \end{aligned}$$

Let $C_j = \langle \mathbf{c}_s : s \equiv j \pmod{q-1} \rangle$ with $0 \leq j \leq q-2$, then the C_j are stable for the action of \mathbf{U}_t . Reordering the basis we have a block matrix which is diagonalizable \iff each block is.

Blocks arising from $S_{k,m}^1(\Gamma_0(t))$: there is a natural inclusion $S_{k,m}^1(\Gamma_0(t)) \hookrightarrow S_k^1(\Gamma_1(t))$ and the subspaces arising from $\Gamma_0(t)$ are those for $k \equiv 2(j+1) \pmod{q-1}$.

The associated coefficient matrix (i.e. with entries in \mathbb{F}_p)

$$M = \begin{pmatrix} m_{1,1} & m_{1,2} & \cdots & m_{1,\frac{n}{2}} & (-1)^{j+1}m_{1,\frac{n}{2}} & \cdots & (-1)^{j+1}m_{1,2} & (-1)^{j+1}(m_{1,1}-1) \\ m_{2,1} & m_{2,2} & \cdots & m_{2,\frac{n}{2}} & (-1)^{j+1}m_{2,\frac{n}{2}} & \cdots & (-1)^{j+1}(m_{2,2}-1) & (-1)^{j+1}m_{2,1} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ m_{\frac{n}{2},1} & m_{\frac{n}{2},2} & \cdots & m_{\frac{n}{2},\frac{n}{2}} & (-1)^{j+1}(m_{\frac{n}{2},\frac{n}{2}}-1) & \cdots & (-1)^{j+1}m_{\frac{n}{2},2} & (-1)^{j+1}m_{\frac{n}{2},1} \\ m_{\frac{n}{2}+1,1} & m_{\frac{n}{2}+1,2} & \cdots & (-1)^{j} & 0 & \cdots & (-1)^{j+1}m_{\frac{n}{2}+1,2} & (-1)^{j+1}m_{\frac{n}{2}+1,1} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\ m_{n-1,1} & (-1)^{j} & \cdots & 0 & 0 & \cdots & 0 & (-1)^{j+1}m_{n-1,1} \\ (-1)^{j} & 0 & \cdots & 0 & 0 & \cdots & 0 & 0 \end{pmatrix}$$

The dimension n comes from the equality k = 2(j+1) + (n-1)(q-1).

Maria Valentino

$$A = \begin{pmatrix} 0 & \dots & (-1)^{j+1} \\ & \ddots & \\ (-1)^{j+1} & \dots & 0 \end{pmatrix} \quad F = \begin{pmatrix} 0 & \dots & (-t)^{s_n} \\ & \ddots & \\ (-t)^{s_1} & \dots & 0 \end{pmatrix} \quad D = \begin{pmatrix} t^{s_1} & \dots & 0 \\ & \ddots & \\ 0 & \dots & t^{s_n} \end{pmatrix}$$

(日) (四) (분) (분) (분) (분)

$$A = \begin{pmatrix} 0 & \dots & (-1)^{j+1} \\ & \ddots & \\ (-1)^{j+1} & \dots & 0 \end{pmatrix} \quad F = \begin{pmatrix} 0 & \cdots & (-t)^{s_n} \\ & \ddots & \\ (-t)^{s_1} & \cdots & 0 \end{pmatrix} \quad D = \begin{pmatrix} t^{s_1} & \cdots & 0 \\ & \ddots & \\ 0 & \cdots & t^{s_n} \end{pmatrix}$$

 $\mathbf{U}_t \mapsto MD$

(日) (四) (분) (분) (분) (분)

$$A = \begin{pmatrix} 0 & \dots & (-1)^{j+1} \\ & \ddots & \\ (-1)^{j+1} & \dots & 0 \end{pmatrix} \quad F = \begin{pmatrix} 0 & \cdots & (-t)^{s_n} \\ & \ddots & \\ (-t)^{s_1} & \dots & 0 \end{pmatrix} \quad D = \begin{pmatrix} t^{s_1} & \cdots & 0 \\ & \ddots & \\ 0 & \cdots & t^{s_n} \end{pmatrix}$$

 $\mathbf{U}_t \mapsto MD \qquad Fricke \mapsto t^{m-k}F \qquad Trace \mapsto MA + I$

(ロ) (四) (E) (E) (E) (E)

$$A = \begin{pmatrix} 0 & \dots & (-1)^{j+1} \\ & \ddots & \\ (-1)^{j+1} & \dots & 0 \end{pmatrix} \quad F = \begin{pmatrix} 0 & \dots & (-t)^{s_n} \\ & \ddots & \\ (-t)^{s_1} & \dots & 0 \end{pmatrix} \quad D = \begin{pmatrix} t^{s_1} & \dots & 0 \\ & \ddots & \\ 0 & \dots & t^{s_n} \end{pmatrix}$$

$$\mathbf{U}_t \mapsto MD \qquad Fricke \mapsto t^{m-k}F \qquad Trace \mapsto MA + I$$

Twisted trace \mapsto $TF = t^{m-k}(MD + F)$ $Im(\delta_1) = Ker(MA)$ $Im(\delta_t) = Ker(MD)$

$$A = \begin{pmatrix} 0 & \dots & (-1)^{j+1} \\ & \ddots & \\ (-1)^{j+1} & \dots & 0 \end{pmatrix} \quad F = \begin{pmatrix} 0 & \cdots & (-t)^{s_n} \\ & \ddots & \\ (-t)^{s_1} & \dots & 0 \end{pmatrix} \quad D = \begin{pmatrix} t^{s_1} & \dots & 0 \\ & \ddots & \\ 0 & \cdots & t^{s_n} \end{pmatrix}$$

$$\mathbf{U}_t \mapsto MD \qquad Fricke \mapsto t^{m-k}F \qquad Trace \mapsto MA + I$$

Twisted trace \mapsto *TF* = $t^{m-k}(MD + F)$ *Im*(δ_1) = *Ker*(*MA*) *Im*(δ_t) = *Ker*(*MD*)

Theorem (Bandini - V.)

$$S_{k,m}^{1}(\Gamma_{0}(t)) = S_{k,m}^{1,old}(\Gamma_{0}(t)) \oplus S_{k,m}^{1,new}(\Gamma_{0}(t)) \iff I - t^{-k}(TF)^{2} \text{ is invertible.}$$

$$A = \begin{pmatrix} 0 & \dots & (-1)^{j+1} \\ & \ddots & \\ (-1)^{j+1} & \dots & 0 \end{pmatrix} \quad F = \begin{pmatrix} 0 & \cdots & (-t)^{s_n} \\ & \ddots & \\ (-t)^{s_1} & \dots & 0 \end{pmatrix} \quad D = \begin{pmatrix} t^{s_1} & \cdots & 0 \\ & \ddots & \\ 0 & \cdots & t^{s_n} \end{pmatrix}$$

$$\mathbf{U}_t \mapsto MD \qquad Fricke \mapsto t^{m-k}F \qquad Trace \mapsto MA + I$$

Twisted trace $\mapsto TF = t^{m-k}(MD + F)$ $Im(\delta_1) = Ker(MA)$ $Im(\delta_t) = Ker(MD)$

Theorem (Bandini - V.)

$$S_{k,m}^{1}(\Gamma_{0}(t)) = S_{k,m}^{1,old}(\Gamma_{0}(t)) \oplus S_{k,m}^{1,new}(\Gamma_{0}(t)) \iff I - t^{-k}(TF)^{2} \text{ is invertible.}$$

Theorem (Bandini - V.)

If $\dim_{\mathbb{C}_{\infty}} S^1_{k,m}(GL_2(\mathcal{O})) \leq 1$, then all conjectures hold.

$$A = \begin{pmatrix} 0 & \dots & (-1)^{j+1} \\ & \ddots & \\ (-1)^{j+1} & \dots & 0 \end{pmatrix} \quad F = \begin{pmatrix} 0 & \dots & (-t)^{s_n} \\ & \ddots & \\ (-t)^{s_1} & \dots & 0 \end{pmatrix} \quad D = \begin{pmatrix} t^{s_1} & \dots & 0 \\ & \ddots & \\ 0 & \dots & t^{s_n} \end{pmatrix}$$

$$\mathbf{U}_t \mapsto MD \qquad Fricke \mapsto t^{m-k}F \qquad Trace \mapsto MA + I$$

Twisted trace $\mapsto TF = t^{m-k}(MD + F)$ $Im(\delta_1) = Ker(MA)$ $Im(\delta_t) = Ker(MD)$

Theorem (Bandini - V.)

$$S_{k,m}^{1}(\Gamma_{0}(t)) = S_{k,m}^{1,old}(\Gamma_{0}(t)) \oplus S_{k,m}^{1,new}(\Gamma_{0}(t)) \iff I - t^{-k}(TF)^{2} \text{ is invertible.}$$

Theorem (Bandini - V.)

If $\dim_{\mathbb{C}_{\infty}} S^1_{k,m}(GL_2(\mathcal{O})) \leq 1$, then all conjectures hold.

Further conjectures

We also formulated conjectures on the distribution of *t*-slopes that can be related to the existence of families of Drinfeld modular forms (see also the work of S. Hattori).

<ロ> (四) (四) (日) (日) (日)

- A. BANDINI, M. VALENTINO On the Atkin U_t operator for Γ₁(t)-invariant Drinfeld cusp forms, Int. J. Number Theory, 14 No. 10 (2018), 2599-2616.
- A. BANDINI, M. VALENTINO On the Atkin U_t operator for Γ₀(t)-invariant Drinfeld cusp forms, Proc. Amer. Math. Soc. 147 (2019), no. 10, 4171–4187.
- 3. A. BANDINI, M. VALENTINO On the structure and slopes of Drinfeld cusp forms, accepted for publication in Exp. Math..
- A. BANDINI, M. VALENTINO On Drinfeld cusp forms of prime level, arXiv:1908.09768 [math:NT] (2019).
- 5. S. HATTORI Dimension variation of Gouvêa-Mazur type for Drinfeld cusp forms of level $\Gamma_1(t)$, to appear in Int. Math. Res. Not.
- S. HATTORI p-adic continuous families of Drinfeld eigenforms of finite slope, arXiv:1904.08618 [math.NT] (2019).

<ロ> (四) (四) (日) (日) (日)

Thanks!

24/10/2019 11 / 11

(中) (종) (종) (종) (종)