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Introduction

Classical modular forms

N,k ∈ N⩾0, p ∈ Z prime

Sk(Γ0(N)) cusp forms of level N and weight k

Hecke operators Tp, p ∈ Z if p ∤ N

Atkin-Lehner operator Up if p∣N .

Fourier expansion f = ∑n⩾1 an(f)q
n, an(f) ∈ C.

Fix p ∤ N , f ∈ Sk(Γ0(pN)) eigenform, then
Upf = ap(f)f .

The p-slope of f is vp(ap(f)).

We have Sk(Γ0(N)) ↪ Sk(Γ0(pN))
via maps

δ1, δp ∶ Sk(Γ0(N)) ↪ Sk(Γ0(pN))

δ1(f)(z) = f(z) and δp(f)(z) = f(pz).
Oldforms: all cusp forms generated by Im(δ1)
and Im(δp).

Newforms: orthogonal complement of old-
forms w.r.t. the Petersson inner product.

Drinfeld modular forms

Q ↔ K = Fq(t)
Z ↔ O = Fq[t]
C ↔ C∞ = K̂∞, ∞ = 1

t
SL2(Z) ↔ GL2(O)
H ↔ Ω ∶= P1(C∞) − P1(K∞)
HΓ ↔ ΩΓ ∶= Ω ∪ {cusps, i.e. Γ/P1(K)}

For γ = (a b
c d

) ∈ GL2(K∞), k,m ∈ Z and ϕ ∶ Ω →
C∞, we define

(ϕ ∣k,mγ)(z) ∶= ϕ(γz)(detγ)m(cz + d)−k.

Let Γ be any congruence subgroup of GL2(O).

Definition

A rigid analytic function ϕ ∶ Ω→ C∞ is called a
Drinfeld modular form of weight k and type m
for Γ if

○ ϕ is holomorphic on Ω and at all cusps;

○ (ϕ ∣k,mγ)(z) = ϕ(z) ∀γ ∈ Γ

A Drinfeld modular form ϕ is called a cusp
form if it vanishes at all cusps.
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Drinfeld modular forms

Let m be an ideal in O = Fq[t].

Drinfeld cusp forms: S1
k,m(Γ0(m)) finite

dim. C∞-vector space;

Fix p = (Pd) with Pd ∈ O prime of degree
d and assume p ∤ m

Hecke operators Tp if p ∤ m

Tp(ϕ) ∶= Pk−md (ϕ ∣k,m (Pd 0
0 1

))(z)+

+ Pk−md ∑
Q∈O

degQ<d

(ϕ ∣k,m ( 1 Q
0 Pd

))(z)

Atkin-Lehner operator Up if the level is pm

Up(ϕ) ∶= Pk−md ∑
Q∈O

degQ<d

(ϕ ∣k,m ( 1 Q
0 Pd

))(z)

Fourier expansion (technical): depends on the
Carlitz exponential eC with period π̃

ϕ(z) = ∑
n⩾0

an(ϕ)
1

eC(π̃z)n
, an(ϕ) ∈ C∞
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Facts and related problems of our interest

Classical modular forms

○ Old eigenforms come in pairs and the
p-slopes of a pair add up to k − 1.
Indeed, let f ∈ Sk(Γ0(N)) be an eigenform,
then Up acts on < δ1(f), δp(f) > with
characteristic polynomial

X
2 − ap(f)X − pk−1

;

○ The slope of a new eigenform is k/2 − 1;

○ Diagonalizability problems.

○ Existence of p-adic families of modular
forms (e.g. Serre, Hida, Coleman).

○ Maeda’s conjecture: The operator Tp
acting on Sk(SL2(Z)) has characteristic
polynomial Pp,k(X) = ∏(X − ap(f)), where
f runs over a basis of eigenforms, which is
irreducible in Q[X] and has full Galois
group over Q for every prime p.

Drinfeld modular forms

Problems:

○ No more correspondance between
eigenvalues of eigenforms and coefficients of
the associated Fouries series.

○ Analogue of Petersson inner product is not
available.
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f runs over a basis of eigenforms, which is
irreducible in Q[X] and has full Galois
group over Q for every prime p.

Drinfeld modular forms

Problems:

○ No more correspondance between
eigenvalues of eigenforms and coefficients of
the associated Fouries series.

○ Analogue of Petersson inner product is not
available.
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Cusp forms for function fields Oldforms

Degeneracy Maps

δ1, δp ∶ S1
k,m(Γ0(m)) → S

1
k,m(Γ0(mp))

δ1(ϕ) ∶= ϕ

δp(ϕ) ∶= (ϕ ∣k,m ( Pd 0
0 1

))(z) , i.e., (δp(ϕ))(z) = Pdmϕ(Pdz).

Definition

The space of oldforms of level m, denoted by S1,old
k,m

(Γ0(m)), is the subspace of S1
k,m(Γ0(m))

generated by the set

{(δ1, δp)(ϕ1, ϕ2) ∶ (ϕ1, ϕ2) ∈ S1
k,m(Γ0(m/p))2

, for all p∣m .}

Theorem (Bandini-V.)

Assume that p ∤ m, then the map

(δ1, δp) ∶ S1
k,m(Γ0(m))2 → S

1
k,m(Γ0(mp))

(ϕ1, ϕ2) ↦ δ1ϕ1 + δpϕ2

is injective. Moreover, we have an equality of sets

{Eigenvalues of Up ∣S1,old
k,m

(Γ0(mp))} = {Eigenvalues of Tp} ∪ {0}.
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Cusp forms for function fields Newforms

Now we focus on the case m = (1).
System of representatives for Γ0(p)/GL2(O) given by

R = {Id, ( 0 −1
1 Q ) s.t. Q ∈ O and degQ < d} .

Definition

We have the following maps defined on S1
k,m(Γ0(p)):

○ the Fricke involution, which preserves the space S1
k,m(Γ0(p)), is represented by the matrix

γp ∶= ( 0 −1
Pd 0 )

and defined by ϕFr = (ϕ ∣k,mγp);

○ the trace map is defined by

Tr ∶ S1
k,m(Γ0(p)) → S

1
k,m(GL2(O))

ϕ↦ ∑
γ∈R

(ϕ ∣k,mγ)(z);

○ the twisted trace map is defined by

Tr
′ ∶ S1

k,m(Γ0(p)) → S
1
k,m(GL2(O))

ϕ↦ Tr(ϕFr).
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Cusp forms for function fields Newforms

Definition

The space of newforms of level p, denoted by S1,new
k,m

(Γ0(p)) is given by Ker(Tr) ∩Ker(Tr′).

Let ϕ ∈ S1
k,m(GL2(O)) be such that Tpϕ = λϕ with λ ≠ 0. Then one can check that

ψ1 ∶= δ1ϕ −
Pk−md

λ
δpϕ ∈Ker(Tr)

ψ2 ∶=
Pk−md

λ
δ1ϕ − Pk−2m

d δpϕ ∈Ker(Tr′)

Theorem (Bandini-V.)

Let ϕ ∈ S1
k,m(Γ0(p)) be a new Up-eigenform of eigenvalue λ, then λ = ±Pk/2

d
.

We have a direct sum decomposition S1
k,m(Γ0(p)) = S1,old

k,m
(Γ0(p)) ⊕ S1,new

k,m
(Γ0(p)) if and only if

the map D ∶= Id − Pk−2m
d (Tr′)2 is bijective.

Conjectures (Special case P1 = t)

○ S1
k,m(Γ0(t)) = S1,old

k,m
(Γ0(t)) ⊕ S1,new

k,m
(Γ0(t));

○ Ut is diagonalizable ⇐⇒ q is odd or q is even and dimC∞ S1,new
k,m

(Γ0(t)) ⩽ 1;

○ Tt is injective (in any positive characteristic);
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Matrix of Ut for level Γ0(t)

There exists a basis for S1
k(Γ1(t)) (using combinatorial techniques) provided by

B = {cj ∣ 0 ⩽ j ⩽ k − 2.}

The action of Ut on this basis is given by

Ut(cj) = −(−t)j+1(
k − 2 − j

j
)cj − tj+1 ∑

h≠0

[(
k − 2 − j − h(q − 1)

−h(q − 1)
)

+(−1)j+1(
k − 2 − j − h(q − 1)

j
)]cj+h(q−1)

Let Cj = ⟨cs ∶ s ≡ j (mod q − 1)⟩ with 0 ⩽ j ⩽ q − 2, then the Cj are stabe for the action of Ut.
Reordering the basis we have a block matrix which is diagonalizable ⇐⇒ each block is.

Blocks arising from S1
k,m(Γ0(t)): there is a natural inclusion S1

k,m(Γ0(t)) ↪ S1
k(Γ1(t)) and the

subspaces arising from Γ0(t) are those for k ≡ 2(j + 1) (mod q − 1).

The associated coefficient matrix (i.e. with entries in Fp)

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

m1,1 m1,2 ⋯ m1, n
2

(−1)j+1m1, n
2

⋯ (−1)j+1m1,2 (−1)j+1(m1,1 − 1)
m2,1 m2,2 ⋯ m2, n

2
(−1)j+1m2, n

2
⋯ (−1)j+1(m2,2 − 1) (−1)j+1m2,1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
mn

2
,1 mn

2
,2 ⋯ mn

2
, n
2

(−1)j+1(mn
2
, n
2
− 1) ⋯ (−1)j+1mn

2
,2 (−1)j+1mn

2
,1

mn
2
+1,1 mn

2
+1,2 ⋯ (−1)j 0 ⋯ (−1)j+1mn

2
+1,2 (−1)j+1mn

2
+1,1

⋮ ⋮ ..
.

⋮ ⋮ ⋱ ⋮ ⋮
mn−1,1 (−1)j ⋯ 0 0 ⋯ 0 (−1)j+1mn−1,1

(−1)j 0 ⋯ 0 0 ⋯ 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

The dimension n comes from the equality k = 2(j + 1) + (n − 1)(q − 1).
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Matrix of Ut for level Γ0(t)
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The action of Ut on this basis is given by

Ut(cj) = −(−t)j+1(
k − 2 − j

j
)cj − tj+1 ∑

h≠0

[(
k − 2 − j − h(q − 1)

−h(q − 1)
)

+(−1)j+1(
k − 2 − j − h(q − 1)

j
)]cj+h(q−1)
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The associated coefficient matrix (i.e. with entries in Fp)
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

m1,1 m1,2 ⋯ m1, n
2

(−1)j+1m1, n
2

⋯ (−1)j+1m1,2 (−1)j+1(m1,1 − 1)
m2,1 m2,2 ⋯ m2, n

2
(−1)j+1m2, n

2
⋯ (−1)j+1(m2,2 − 1) (−1)j+1m2,1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
mn

2
,1 mn

2
,2 ⋯ mn

2
, n
2

(−1)j+1(mn
2
, n
2
− 1) ⋯ (−1)j+1mn

2
,2 (−1)j+1mn

2
,1

mn
2
+1,1 mn

2
+1,2 ⋯ (−1)j 0 ⋯ (−1)j+1mn

2
+1,2 (−1)j+1mn

2
+1,1

⋮ ⋮ ..
.

⋮ ⋮ ⋱ ⋮ ⋮
mn−1,1 (−1)j ⋯ 0 0 ⋯ 0 (−1)j+1mn−1,1

(−1)j 0 ⋯ 0 0 ⋯ 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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Matrix of Ut for level Γ0(t)

A =
⎛
⎜⎜⎜
⎝

0 . . . (−1)j+1

. .
.

(−1)j+1 . . . 0

⎞
⎟⎟⎟
⎠

F =
⎛
⎜⎜
⎝

0 ⋯ (−t)sn

. .
.

(−t)s1 ⋯ 0

⎞
⎟⎟
⎠

D =
⎛
⎜
⎝

ts1 ⋯ 0
⋱

0 ⋯ tsn

⎞
⎟
⎠

where for 1 ⩽ i ⩽ n we set si = j + 1 + (i − 1)(q − 1).

Ut ↦MD Fricke ↦ t
m−k

F Trace ↦MA + I

Twisted trace↦ TF = tm−k(MD + F ) Im(δ1) =Ker(MA) Im(δt) =Ker(MD)

Theorem (Bandini - V.)

S
1
k,m(Γ0(t)) = S1,old

k,m (Γ0(t)) ⊕ S1,new
k,m (Γ0(t)) ⇐⇒ I − t−k(TF )2

is invertible.

Theorem (Bandini - V.)

If dimC∞ S1
k,m(GL2(O)) ⩽ 1, then all conjectures hold.

Further conjectures

We also formulated conjectures on the distribution of t-slopes that can be related to the existence
of families of Drinfeld modular forms (see also the work of S. Hattori).
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