Minimizing GCD sums and applications Number Theory Meeting, Torino

Marc Munsch (Joint work with La Bretèche and Tenenbaum)

Institut für Analysis und Zahlentheorie, TU Graz

Introduction

In 1949 Gál introduced the following sums associated to a set \mathcal{M} and defined by

$$
S_{\alpha}(\mathcal{M}):=\sum_{m_{1}, m_{2} \in \mathcal{M}} \frac{\left(m_{1}, m_{2}\right)^{2 \alpha}}{\left(m_{1} m_{2}\right)^{\alpha}} \quad(0<\alpha \leqslant 1)
$$

where $\left(m_{1}, m_{2}\right)$ denotes the greatest common divisor of m_{1} and m_{2}.

- Originally had applications in metric Diophantine approximation (distribution modulo 1, Duffin-Schaeffer conjecture, ...)

Riemann zeta function.

Introduction

In 1949 Gál introduced the following sums associated to a set \mathcal{M} and defined by

$$
S_{\alpha}(\mathcal{M}):=\sum_{m_{1}, m_{2} \in \mathcal{M}} \frac{\left(m_{1}, m_{2}\right)^{2 \alpha}}{\left(m_{1} m_{2}\right)^{\alpha}} \quad(0<\alpha \leqslant 1)
$$

where $\left(m_{1}, m_{2}\right)$ denotes the greatest common divisor of m_{1} and m_{2}.

- Originally had applications in metric Diophantine approximation (distribution modulo 1, Duffin-Schaeffer conjecture, ...)
- Recently, new interest in connection with large values of the Riemann zeta function.

Maximum of GCD sums

Question: What is the maximal size (in terms of N) of $S_{\alpha}(\mathcal{M})$ among all the choices of sets \mathcal{M} of a fixed size N ?

Maximum of GCD sums

Question: What is the maximal size (in terms of N) of $S_{\alpha}(\mathcal{M})$ among all the choices of sets \mathcal{M} of a fixed size N ?

- For $1 / 2<\alpha \leq 1$, optimal results (Gál, Aistleitner-Berkes-Seip).

Maximum of GCD sums

Question: What is the maximal size (in terms of N) of $S_{\alpha}(\mathcal{M})$ among all the choices of sets \mathcal{M} of a fixed size N ?

■ For $1 / 2<\alpha \leq 1$, optimal results (Gál, Aistleitner-Berkes-Seip).
$-\max _{|\mathcal{M}|=N} \frac{S_{1 / 2}(\mathcal{M})}{|\mathcal{M}|} \geq \exp \left\{(C+o(1)) \sqrt{\frac{\log N \log _{3} N}{\log _{2} N}}\right\}$ where $\log _{k}$ is the k th-iterative of the logarithm(Bondarenko-Seip)

Maximum of GCD sums

Question: What is the maximal size (in terms of N) of $S_{\alpha}(\mathcal{M})$ among all the choices of sets \mathcal{M} of a fixed size N ?

- For $1 / 2<\alpha \leq 1$, optimal results (Gál, Aistleitner-Berkes-Seip).
- $\max _{|\mathcal{M}|=N} \frac{S_{1 / 2}(\mathcal{M})}{|\mathcal{M}|} \geq \exp \left\{(C+o(1)) \sqrt{\frac{\log N \log _{3} N}{\log _{2} N}}\right\}$ where $\log _{k}$ is the k th-iterative of the logarithm(Bondarenko-Seip)
- Optimal constant $C=2 \sqrt{2}$ obtained by La Bretèche and Tenenbaum

Maximum of GCD sums

Question: What is the maximal size (in terms of N) of $S_{\alpha}(\mathcal{M})$ among all the choices of sets \mathcal{M} of a fixed size N ?

- For $1 / 2<\alpha \leq 1$, optimal results (Gál, Aistleitner-Berkes-Seip).
- $\max _{|\mathcal{M}|=N} \frac{S_{1 / 2}(\mathcal{M})}{|\mathcal{M}|} \geq \exp \left\{(C+o(1)) \sqrt{\frac{\log N \log _{3} N}{\log _{2} N}}\right\}$ where $\log _{k}$ is the k th-iterative of the logarithm(Bondarenko-Seip)
- Optimal constant $C=2 \sqrt{2}$ obtained by La Bretèche and Tenenbaum

Maximum of GCD sums

Question: What is the maximal size (in terms of N) of $S_{\alpha}(\mathcal{M})$ among all the choices of sets \mathcal{M} of a fixed size N ?

- For $1 / 2<\alpha \leq 1$, optimal results (Gál, Aistleitner-Berkes-Seip).
$-\max _{|\mathcal{M}|=N} \frac{S_{1 / 2}(\mathcal{M})}{|\mathcal{M}|} \geq \exp \left\{(C+o(1)) \sqrt{\frac{\log N \log _{3} N}{\log _{2} N}}\right\}$ where $\log _{k}$ is the k th-iterative of the logarithm(Bondarenko-Seip)
- Optimal constant $C=2 \sqrt{2}$ obtained by La Bretèche and Tenenbaum

Consequence:
$\left.\max _{t \in[0, T] \left\lvert\, \zeta\left(\frac{1}{2}\right.\right.}+i t\right) \left\lvert\, \geq \exp \left\{(2 \sqrt{2}+o(1)) \sqrt{\frac{\log T \log _{3} T}{\log _{2} T}}\right\}\right.$

What about small GCD sums?

In the maximum problem, the cardinality of \mathcal{M} is fixed while the size of its elements is not (allow to choose very sparse sets).

What about small GCD sums?

In the maximum problem, the cardinality of \mathcal{M} is fixed while the size of its elements is not (allow to choose very sparse sets). We study the minimal value of the ratio

$$
\begin{equation*}
\mathcal{T}(N):=\inf _{w \in\left(\mathbb{R}_{+}\right)^{N}}\left(\frac{N}{\|w\|_{1}^{2}} \sum_{m_{1}, m_{2} \leqslant N} w\left(m_{1}\right) w\left(m_{2}\right) \frac{\left(m_{1}, m_{2}\right)}{\sqrt{m_{1} m_{2}}}\right) . \tag{1}
\end{equation*}
$$

What about small GCD sums?

In the maximum problem, the cardinality of \mathcal{M} is fixed while the size of its elements is not (allow to choose very sparse sets).
We study the minimal value of the ratio

$$
\begin{equation*}
\mathcal{T}(N):=\inf _{w \in\left(\mathbb{R}_{+}\right)^{N}}\left(\frac{N}{\|w\|_{1}^{2}} \sum_{m_{1}, m_{2} \leqslant N} w\left(m_{1}\right) w\left(m_{2}\right) \frac{\left(m_{1}, m_{2}\right)}{\sqrt{m_{1} m_{2}}}\right) . \tag{1}
\end{equation*}
$$

Example: When $w(m) \in\{0,1\}$, equivalent to

$$
\begin{equation*}
\inf _{\mathcal{M} \subset[1, N]}\left(\frac{N}{|\mathcal{M}|^{2}} \sum_{m_{1}, m_{2} \in \mathcal{M}} \frac{\left(m_{1}, m_{2}\right)}{\sqrt{m_{1} m_{2}}}\right) \tag{2}
\end{equation*}
$$

Maximal density of a set \mathcal{M} such that

What about small GCD sums?

In the maximum problem, the cardinality of \mathcal{M} is fixed while the size of its elements is not (allow to choose very sparse sets).
We study the minimal value of the ratio

$$
\begin{equation*}
\mathcal{T}(N):=\inf _{w \in\left(\mathbb{R}_{+}\right)^{N}}\left(\frac{N}{\|w\|_{1}^{2}} \sum_{m_{1}, m_{2} \leqslant N} w\left(m_{1}\right) w\left(m_{2}\right) \frac{\left(m_{1}, m_{2}\right)}{\sqrt{m_{1} m_{2}}}\right) . \tag{1}
\end{equation*}
$$

Example: When $w(m) \in\{0,1\}$, equivalent to

$$
\begin{equation*}
\inf _{\mathcal{M} \subset[1, N]}\left(\frac{N}{|\mathcal{M}|^{2}} \sum_{m_{1}, m_{2} \in \mathcal{M}} \frac{\left(m_{1}, m_{2}\right)}{\sqrt{m_{1} m_{2}}}\right) \tag{2}
\end{equation*}
$$

Maximal density of a set \mathcal{M} such that

$$
\sum_{m_{1}, m_{2} \in \mathcal{M}} \frac{\left(m_{1}, m_{2}\right)}{\sqrt{m_{1} m_{2}}} \ll|\mathcal{M}|(\log |\mathcal{M}|)^{o(1)}
$$

Main result and applications

Trivial bound: $\mathcal{T}(N) \ll \log N$ (take $\mathcal{M}=\{1, \ldots, N\}$ or $\mathcal{M}=\{p \leq N$, p prime $\}$).

Theorem (La Bretèche, M., Tenenbaum 2019)
There exists $\eta \approx 0.16656$

Main result and applications

Trivial bound: $\mathcal{T}(N) \ll \log N$ (take $\mathcal{M}=\{1, \ldots, N\}$ or $\mathcal{M}=\{p \leq N$, p prime $\}$).

Theorem (La Bretèche, M., Tenenbaum 2019)
There exists $\eta \approx 0.16656<1 / 6$ such that when N tends to $+\infty$

$$
(\log N)^{\eta} \ll \mathcal{T}(N) \ll(\log N)^{\eta}\left(\log _{2} N\right)^{3}
$$

Main result and applications

Trivial bound: $\mathcal{T}(N) \ll \log N$ (take $\mathcal{M}=\{1, \ldots, N\}$ or $\mathcal{M}=\{p \leq N$, p prime $\}$).

Theorem (La Bretèche, M., Tenenbaum 2019)
There exists $\eta \approx 0.16656<1 / 6$ such that when N tends to $+\infty$

$$
(\log N)^{\eta} \ll \mathcal{T}(N) \ll(\log N)^{\eta}\left(\log _{2} N\right)^{3}
$$

Application:

- Logarithmic improvements of the Burgess' bound on multiplicative character sums
- Non-vanishing of theta functions
- Lower bounds on small moments of character sums

Main result and applications

Trivial bound: $\mathcal{T}(N) \ll \log N$ (take $\mathcal{M}=\{1, \ldots, N\}$ or $\mathcal{M}=\{p \leq N$, p prime $\}$).

Theorem (La Bretèche, M., Tenenbaum 2019)
There exists $\eta \approx 0.16656<1 / 6$ such that when N tends to $+\infty$

$$
(\log N)^{\eta} \ll \mathcal{T}(N) \ll(\log N)^{\eta}\left(\log _{2} N\right)^{3}
$$

Application:

- Logarithmic improvements of the Burgess' bound on multiplicative character sums
- Non-vanishing of theta functions

Main result and applications

Trivial bound: $\mathcal{T}(N) \ll \log N$ (take $\mathcal{M}=\{1, \ldots, N\}$ or $\mathcal{M}=\{p \leq N$, p prime $\}$).

Theorem (La Bretèche, M., Tenenbaum 2019)

There exists $\eta \approx 0.16656<1 / 6$ such that when N tends to $+\infty$

$$
(\log N)^{\eta} \ll \mathcal{T}(N) \ll(\log N)^{\eta}\left(\log _{2} N\right)^{3}
$$

Application:

- Logarithmic improvements of the Burgess' bound on multiplicative character sums
- Non-vanishing of theta functions

■ Lower bounds on small moments of character sums
\qquad

Main result and applications

Trivial bound: $\mathcal{T}(N) \ll \log N$ (take $\mathcal{M}=\{1, \ldots, N\}$ or $\mathcal{M}=\{p \leq N$, p prime $\}$).

Theorem (La Bretèche, M., Tenenbaum 2019)

There exists $\eta \approx 0.16656<1 / 6$ such that when N tends to $+\infty$

$$
(\log N)^{\eta} \ll \mathcal{T}(N) \ll(\log N)^{\eta}\left(\log _{2} N\right)^{3}
$$

Application:

- Logarithmic improvements of the Burgess' bound on multiplicative character sums
- Non-vanishing of theta functions

■ Lower bounds on small moments of character sums
\qquad

Main result and applications

Trivial bound: $\mathcal{T}(N) \ll \log N$ (take $\mathcal{M}=\{1, \ldots, N\}$ or $\mathcal{M}=\{p \leq N$, p prime $\}$).

Theorem (La Bretèche, M., Tenenbaum 2019)

There exists $\eta \approx 0.16656<1 / 6$ such that when N tends to $+\infty$

$$
(\log N)^{\eta} \ll \mathcal{T}(N) \ll(\log N)^{\eta}\left(\log _{2} N\right)^{3} .
$$

Application:

- Logarithmic improvements of the Burgess' bound on multiplicative character sums
- Non-vanishing of theta functions

■ Lower bounds on small moments of character sums
A related minimization problem gives better results in last two applications.

Multiplicative character sums

Let us consider

$$
S_{\chi}(M, N):=\sum_{M<n \leqslant M+N} \chi(n)
$$

where $\chi \bmod p$ is a multiplicative character.
Example: The Legendre symbol $n \rightarrow\left(\frac{n}{p}\right)$.
Question: How large N should be to ensure $S_{x}(M, N)=O(N)$?
Applications: Distribution of quadratic residues modulo p, primitive
roots of \mathbb{F}_{p}^{*} etc

Multiplicative character sums

Let us consider

$$
S_{\chi}(M, N):=\sum_{M<n \leqslant M+N} \chi(n)
$$

where $\chi \bmod p$ is a multiplicative character.
Example: The Legendre symbol $n \rightarrow\left(\frac{n}{p}\right)$.
Question: How large N should be to ensure $S_{\chi}(M, N)=o(N)$?
$\left|S_{\chi}(M, N)\right| \ll \sqrt{p} \log p$
Pólya and Vinogradov.

Multiplicative character sums

Let us consider

$$
S_{\chi}(M, N):=\sum_{M<n \leqslant M+N} \chi(n)
$$

where $\chi \bmod p$ is a multiplicative character.
Example: The Legendre symbol $n \rightarrow\left(\frac{n}{p}\right)$.
Question: How large N should be to ensure $S_{\chi}(M, N)=o(N)$?
Applications: Distribution of quadratic residues modulo p, primitive roots of \mathbb{F}_{p}^{*} etc

Multiplicative character sums

Let us consider

$$
S_{\chi}(M, N):=\sum_{M<n \leqslant M+N} \chi(n)
$$

where $\chi \bmod p$ is a multiplicative character.
Example: The Legendre symbol $n \rightarrow\left(\frac{n}{p}\right)$.
Question: How large N should be to ensure $S_{\chi}(M, N)=o(N)$?
Applications: Distribution of quadratic residues modulo p, primitive roots of \mathbb{F}_{p}^{*} etc

$$
\begin{equation*}
\left|S_{\chi}(M, N)\right| \ll \sqrt{p} \log p \quad \text { Pólya and Vinogradov. } \tag{3}
\end{equation*}
$$

Multiplicative character sums

Let us consider

$$
S_{\chi}(M, N):=\sum_{M<n \leqslant M+N} \chi(n)
$$

where $\chi \bmod p$ is a multiplicative character.
Example: The Legendre symbol $n \rightarrow\left(\frac{n}{p}\right)$.
Question: How large N should be to ensure $S_{\chi}(M, N)=o(N)$?
Applications: Distribution of quadratic residues modulo p, primitive roots of \mathbb{F}_{p}^{*} etc

$$
\begin{equation*}
\left|S_{\chi}(M, N)\right| \ll \sqrt{p} \log p \quad \text { Pólya and Vinogradov. } \tag{3}
\end{equation*}
$$

- Non trivial when $N \geqslant p^{1 / 2+\varepsilon}$.

Burgess' bound

Major breakthrough obtained by Burgess in 1962

$$
\begin{equation*}
\left|S_{\chi}(M, N)\right| \ll N^{1-1 / r} p^{(r+1) / 4 r^{2}} \log p, \quad r \geq 2 \tag{4}
\end{equation*}
$$

Burgess' bound

Major breakthrough obtained by Burgess in 1962

$$
\begin{equation*}
\left|S_{\chi}(M, N)\right| \ll N^{1-1 / r} p^{(r+1) / 4 r^{2}} \log p, \quad r \geq 2 \tag{4}
\end{equation*}
$$

- Non trivial when $N \geqslant p^{1 / 4+\varepsilon}$.

Burgess' bound

Major breakthrough obtained by Burgess in 1962

$$
\begin{equation*}
\left|S_{\chi}(M, N)\right| \ll N^{1-1 / r} p^{(r+1) / 4 r^{2}} \log p, \quad r \geq 2 \tag{4}
\end{equation*}
$$

- Non trivial when $N \geqslant p^{1 / 4+\varepsilon}$.

■ Iwaniec-Kowalski $(\log p)^{1 / 2 r}$

Burgess' bound

Major breakthrough obtained by Burgess in 1962

$$
\begin{equation*}
\left|S_{\chi}(M, N)\right| \ll N^{1-1 / r} p^{(r+1) / 4 r^{2}} \log p, \quad r \geq 2 \tag{4}
\end{equation*}
$$

- Non trivial when $N \geqslant p^{1 / 4+\varepsilon}$.
- Iwaniec-Kowalski $(\log p)^{1 / 2 r}$
- Kerr-Shparlinski-Yau $(\log p)^{1 / 4 r}$

Burgess' bound

Major breakthrough obtained by Burgess in 1962

$$
\begin{equation*}
\left|S_{\chi}(M, N)\right| \ll N^{1-1 / r} p^{(r+1) / 4 r^{2}} \log p, \quad r \geq 2 \tag{4}
\end{equation*}
$$

- Non trivial when $N \geqslant p^{1 / 4+\varepsilon}$.
- Iwaniec-Kowalski $(\log p)^{1 / 2 r}$
- Kerr-Shparlinski-Yau $(\log p)^{1 / 4 r}$

Burgess' bound

Major breakthrough obtained by Burgess in 1962

$$
\begin{equation*}
\left|S_{\chi}(M, N)\right| \ll N^{1-1 / r} p^{(r+1) / 4 r^{2}} \log p, \quad r \geq 2 \tag{4}
\end{equation*}
$$

- Non trivial when $N \geqslant p^{1 / 4+\varepsilon}$.
- Iwaniec-Kowalski $(\log p)^{1 / 2 r}$
- Kerr-Shparlinski-Yau $(\log p)^{1 / 4 r}$

As an application of GCD sums, we prove:

Theorem (La Bretèche, M., Tenenbaum 2019)

$$
S_{\chi}(M, N) \ll N^{1-1 / r_{1}} p^{(r+1) / 4 r^{2}}(\log p)^{(\eta+o(1)) / 2 r}, \quad \eta \approx 0.16656
$$

Multiplicative energy and a related problem

For two sets $\mathcal{A}, \mathcal{B} \subset[1, N]$, we consider the multiplicative energy

$$
E_{\times}(\mathcal{A}, \mathcal{B}):=\left|\left\{m_{1}, n_{1} \in \mathcal{A}, m_{2}, n_{2} \in \mathcal{B}: m_{1} m_{2}=n_{1} n_{2}\right\}\right|
$$

Multiplicative energy and a related problem

For two sets $\mathcal{A}, \mathcal{B} \subset[1, N]$, we consider the multiplicative energy

$$
E_{\times}(\mathcal{A}, \mathcal{B}):=\left|\left\{m_{1}, n_{1} \in \mathcal{A}, m_{2}, n_{2} \in \mathcal{B}: m_{1} m_{2}=n_{1} n_{2}\right\}\right|
$$

- Appears to be of great importance in additive combinatorics.
- GCD sums are related to the quantity

$$
E_{\times}(N, \mathcal{B}):=\mid\left\{1 \leqslant m_{1}, n_{1} \leqslant N, m_{2}, n_{2} \in \mathcal{B}\right.
$$

Multiplicative energy and a related problem

For two sets $\mathcal{A}, \mathcal{B} \subset[1, N]$, we consider the multiplicative energy

$$
E_{\times}(\mathcal{A}, \mathcal{B}):=\left|\left\{m_{1}, n_{1} \in \mathcal{A}, m_{2}, n_{2} \in \mathcal{B}: m_{1} m_{2}=n_{1} n_{2}\right\}\right|
$$

- Appears to be of great importance in additive combinatorics.
- GCD sums are related to the quantity

$$
E_{\times}(N, \mathcal{B}):=\left|\left\{1 \leqslant m_{1}, n_{1} \leqslant N, m_{2}, n_{2} \in \mathcal{B}: m_{1} m_{2}=n_{1} n_{2}\right\}\right| .
$$

In view of our applications, we need to bound $E_{x}(\mathcal{B}, \mathcal{B})$
 that $E_{x}(\mathcal{B}, \mathcal{B}) \ll|\mathcal{B}|^{2}(\log N)^{o}(1)$

Multiplicative energy and a related problem

For two sets $\mathcal{A}, \mathcal{B} \subset[1, N]$, we consider the multiplicative energy

$$
E_{\times}(\mathcal{A}, \mathcal{B}):=\left|\left\{m_{1}, n_{1} \in \mathcal{A}, m_{2}, n_{2} \in \mathcal{B}: m_{1} m_{2}=n_{1} n_{2}\right\}\right|
$$

- Appears to be of great importance in additive combinatorics.
- GCD sums are related to the quantity

$$
E_{\times}(N, \mathcal{B}):=\left|\left\{1 \leqslant m_{1}, n_{1} \leqslant N, m_{2}, n_{2} \in \mathcal{B}: m_{1} m_{2}=n_{1} n_{2}\right\}\right| .
$$

In view of our applications, we need to bound $E_{x}(\mathcal{B}, \mathcal{B})$
 that $E_{x}(\mathcal{B}, \mathcal{B}) \ll|\mathcal{B}|^{2}(\log N)^{o}(1)$

Multiplicative energy and a related problem

For two sets $\mathcal{A}, \mathcal{B} \subset[1, N]$, we consider the multiplicative energy

$$
E_{\times}(\mathcal{A}, \mathcal{B}):=\left|\left\{m_{1}, n_{1} \in \mathcal{A}, m_{2}, n_{2} \in \mathcal{B}: m_{1} m_{2}=n_{1} n_{2}\right\}\right| .
$$

- Appears to be of great importance in additive combinatorics.
- GCD sums are related to the quantity

$$
E_{\times}(N, \mathcal{B}):=\left|\left\{1 \leqslant m_{1}, n_{1} \leqslant N, m_{2}, n_{2} \in \mathcal{B}: m_{1} m_{2}=n_{1} n_{2}\right\}\right|
$$

In view of our applications, we need to bound $E_{\times}(\mathcal{B}, \mathcal{B})$. Analogous question: How dense can we choose $\mathcal{B} \subset[1, N]$ such that $E_{\times}(\mathcal{B}, \mathcal{B}) \ll|\mathcal{B}|^{2}(\log N)^{o(1)}$.

Minimization problem and main result

This is equivalent to estimate the quantity

$$
\mathcal{E}_{N}:=\inf _{\mathcal{B} \subset[1, N]} N^{2} E_{\times}(\mathcal{B}, \mathcal{B}) /|\mathcal{B}|^{4}
$$

Theorem (La Bretèche, M., Tenenbaum 2019)
Let $\delta:=1-\frac{1+\log _{2} 2}{\log 2} \approx 0.08607$. When N tends to $+\infty$, we have

$$
(\log N)^{\delta}\left(\log _{2} N\right)^{3 / 2} \ll \mathcal{E}_{N} \ll(\log N)^{\delta}\left(\log _{2} N\right)^{6}
$$

Minimization problem and main result

This is equivalent to estimate the quantity

$$
\mathcal{E}_{N}:=\inf _{\mathcal{B} \subset[1, N]} N^{2} E_{\times}(\mathcal{B}, \mathcal{B}) /|\mathcal{B}|^{4}
$$

Theorem (La Bretèche, M., Tenenbaum 2019)

Let $\delta:=1-\frac{1+\log _{2} 2}{\log 2} \approx 0.08607$. When N tends to $+\infty$, we have

$$
(\log N)^{\delta}\left(\log _{2} N\right)^{3 / 2} \ll \mathcal{E}_{N} \ll(\log N)^{\delta}\left(\log _{2} N\right)^{6}
$$

The exponent δ is the one appearing in the famous multiplication table problem of Erdős:

$$
H(N)=\left\lvert\,\left\{n \leq N^{2} \exists a, b \leq N, n=a b\right\} \asymp \frac{N^{2}}{(\log N)^{\delta+o(1)}}\right.
$$

Small moments of random multiplicative functions and character sums

$p \rightarrow X(p)$ a random variable uniformly distributed on $\{z,|z|=1\}$. Random multiplicative function: $X(n)=\prod_{p^{\alpha} \| n} X(p)^{\alpha}$.

Small moments of random multiplicative functions and character sums

$p \rightarrow X(p)$ a random variable uniformly distributed on $\{z,|z|=1\}$. Random multiplicative function: $X(n)=\prod_{p^{\alpha} \| n} X(p)^{\alpha}$.
Conjecture(Helson):

$$
\mathbb{E}\left|\sum_{n \leq N} X(n)\right|=o(\sqrt{N}) .
$$

Small moments of random multiplicative functions and character sums

$p \rightarrow X(p)$ a random variable uniformly distributed on $\{z,|z|=1\}$. Random multiplicative function: $X(n)=\prod_{p^{\alpha} \| n} X(p)^{\alpha}$.
Conjecture(Helson):

$$
\mathbb{E}\left|\sum_{n \leq N} X(n)\right|=o(\sqrt{N}) .
$$

■ Harper (2018) proved the conjecture under the following form

$$
\mathbb{E}\left|\sum_{n \leq N} X(n)\right| \asymp \frac{\sqrt{N}}{(\log \log N)^{1 / 4}} .
$$

Small moments of random multiplicative functions and character sums

$p \rightarrow X(p)$ a random variable uniformly distributed on $\{z,|z|=1\}$. Random multiplicative function: $X(n)=\prod_{p^{\alpha} \| n} X(p)^{\alpha}$.
Conjecture(Helson):

$$
\mathbb{E}\left|\sum_{n \leq N} X(n)\right|=o(\sqrt{N}) .
$$

- Harper (2018) proved the conjecture under the following form $\mathbb{E}\left|\sum_{n \leq N} X(n)\right| \asymp \frac{\sqrt{N}}{(\log \log N)^{1 / 4}}$.
■ Deterministic analogues?

Small moments of random multiplicative functions and character sums

$p \rightarrow X(p)$ a random variable uniformly distributed on $\{z,|z|=1\}$. Random multiplicative function: $X(n)=\prod_{p^{\alpha} \| n} X(p)^{\alpha}$.
Conjecture(Helson):

$$
\mathbb{E}\left|\sum_{n \leq N} X(n)\right|=o(\sqrt{N}) .
$$

- Harper (2018) proved the conjecture under the following form $\mathbb{E}\left|\sum_{n \leq N} X(n)\right| \asymp \frac{\sqrt{N}}{(\log \log N)^{1 / 4}}$.
■ Deterministic analogues?

Small moments of random multiplicative functions and character sums
$p \rightarrow X(p)$ a random variable uniformly distributed on $\{z,|z|=1\}$. Random multiplicative function: $X(n)=\prod_{p^{\alpha} \| n} X(p)^{\alpha}$.
Conjecture(Helson):

$$
\mathbb{E}\left|\sum_{n \leq N} X(n)\right|=o(\sqrt{N}) .
$$

- Harper (2018) proved the conjecture under the following form

$$
\mathbb{E}\left|\sum_{n \leq N} X(n)\right| \asymp \frac{\sqrt{N}}{(\log \log N)^{1 / 4}}
$$

■ Deterministic analogues?
We have more than square-root cancellation (Harper, announced)

$$
\frac{1}{p-1} \sum_{\chi \neq \chi_{0}}\left|\sum_{n \leqslant N} \chi(n)\right| \ll \frac{\sqrt{N}}{\min \left\{(\log \log L)^{1 / 4},(\log \log \log p)^{1 / 4}\right\}}
$$

where $L=\min \{N, p / N\}$.

Lower bounds for moments of character sums

Obtaining good lower bounds from the probabilistic methods used by Harper seems hard.

Lower bounds for moments of character sums

Obtaining good lower bounds from the probabilistic methods used by Harper seems hard.

Theorem (La Bretèche, M., Tenenbaum 2019)

For p sufficiently large and $L:=\min (N, p / N)$, we have

$$
\frac{1}{p-2} \sum_{\chi \neq \chi_{0}}\left|\sum_{n \leqslant N} \chi(n)\right| \gg \sqrt{\frac{N}{\mathcal{E}_{L}}} \gg \frac{\sqrt{N}}{(\log L)^{\delta / 2}\left(\log _{2} L\right)^{3}}
$$

with $\delta / 2 \approx 0.043$.

Choice of \mathcal{M} and rough idea of the proof

Let $N_{k}(N)$ denote the number of integers $n \leqslant N$ such that $\Omega(n)=k$ (where $\Omega(n)$ denote the total number of prime factors of n, counted with multiplicity).

Choice of \mathcal{M} and rough idea of the proof

Let $N_{k}(N)$ denote the number of integers $n \leqslant N$ such that $\Omega(n)=k$ (where $\Omega(n)$ denote the total number of prime factors of n, counted with multiplicity).
We have for $\kappa:=k / \log _{2} N$

$$
N_{k}(N) \asymp \frac{N}{(\log N)^{Q(\kappa)} \sqrt{\log _{2} N}}
$$

where $Q(x)=x \log x-x+1$.

Choice of \mathcal{M} and rough idea of the proof

Let $N_{k}(N)$ denote the number of integers $n \leqslant N$ such that $\Omega(n)=k$ (where $\Omega(n)$ denote the total number of prime factors of n, counted with multiplicity).
We have for $\kappa:=k / \log _{2} N$

$$
N_{k}(N) \asymp \frac{N}{(\log N)^{Q(\kappa)} \sqrt{\log _{2} N}}
$$

where $Q(x)=x \log x-x+1$.
To prove the upper bound for $\mathcal{T}(N)$, we choose the set of integers $n \in(N / 2, N)$ such that $\Omega(n)=\kappa \log _{2} N$ and

$$
\Omega(n, t):=\sum_{p^{\nu} \| n, p \leqslant t} \nu \leqslant \kappa \log _{2} 3 t+C(1 \leqslant t \leqslant N) .
$$

Local properties of divisors

Denote by $F_{k}(N ; C)$ the number of integers $n \leqslant N$ counted by $N_{k}(N)$ and such that

$$
\begin{equation*}
\Omega(n, t) \leqslant \kappa \log _{2} 3 t+C \quad(1 \leqslant t \leqslant N) \tag{5}
\end{equation*}
$$

with $\kappa:=k / \log _{2} x$.
Lemma (Deduced from the work of Ford)
Let $\left.\kappa_{0} \in\right] 0,2\left[\right.$. For $0 \leqslant \kappa \leqslant \kappa_{0}$ and suitable $C=C\left(\kappa_{0}\right)$, we have

$$
\begin{equation*}
F_{k}(N ; C) \asymp \frac{N_{k}(N)}{k} \quad(N \geqslant 3) \tag{6}
\end{equation*}
$$

Thank you for your attention!

