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Introduction

In 1949 Gál introduced the following sums associated to a setM
and defined by

Sα(M) :=
∑

m1,m2∈M

(m1,m2)2α

(m1m2)α
(0 < α 6 1)

where (m1,m2) denotes the greatest common divisor of m1 and m2.

Originally had applications in metric Diophantine
approximation (distribution modulo 1, Duffin-Schaeffer
conjecture, . . . )
Recently, new interest in connection with large values of the
Riemann zeta function.
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Maximum of GCD sums

Question: What is the maximal size (in terms of N) of Sα(M)
among all the choices of setsM of a fixed size N?

For 1/2 < α ≤ 1, optimal results (Gál,
Aistleitner-Berkes-Seip).

max|M|=N
S1/2(M)

|M| ≥ exp

{
(C + o(1))

√
logN log3 N

log2 N

}
where

logk is the kth-iterative of the logarithm(Bondarenko-Seip)
Optimal constant C = 2

√
2 obtained by La Bretèche and

Tenenbaum

Consequence:

maxt∈[0,T ] |ζ(1
2 + it)| ≥ exp

{
(2
√
2 + o(1))

√
logT log3 T

log2 T

}
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What about small GCD sums?

In the maximum problem, the cardinality ofM is fixed while the
size of its elements is not (allow to choose very sparse sets).
We study the minimal value of the ratio

T (N) := inf
w∈(R+)N

 N

||w ||21

∑
m1,m26N

w(m1)w(m2)
(m1,m2)
√
m1m2

 . (1)

Example: When w(m) ∈ {0, 1}, equivalent to

inf
M⊂[1,N]

 N

|M|2
∑

m1,m2∈M

(m1,m2)
√
m1m2

 . (2)

Maximal density of a setM such that∑
m1,m2∈M

(m1,m2)
√
m1m2

� |M|(log |M|)o(1)
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Main result and applications

Trivial bound: T (N)� logN (takeM = {1, . . . ,N} or
M = {p ≤ N, p prime}).

Theorem (La Bretèche, M., Tenenbaum 2019)

There exists η ≈ 0.16656 < 1/6 such that when N tends to +∞

(logN)η � T (N)� (logN)η(log2 N)3.

Application:
Logarithmic improvements of the Burgess’ bound on
multiplicative character sums
Non-vanishing of theta functions
Lower bounds on small moments of character sums

A related minimization problem gives better results in last two
applications.
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Multiplicative character sums

Let us consider

Sχ(M,N) :=
∑

M<n6M+N

χ(n),

where χ mod p is a multiplicative character.
Example: The Legendre symbol n→

(
n
p

)
.

Question: How large N should be to ensure Sχ(M,N) = o(N)?
Applications: Distribution of quadratic residues modulo p, primitive
roots of F∗p etc

|Sχ(M,N)| � √p log p Pólya and Vinogradov. (3)

Non trivial when N > p1/2+ε.
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Burgess’ bound

Major breakthrough obtained by Burgess in 1962

|Sχ(M,N)| � N1−1/rp(r+1)/4r2 log p, r ≥ 2. (4)

Non trivial when N > p1/4+ε.
Iwaniec-Kowalski (log p)1/2r

Kerr-Shparlinski-Yau (log p)1/4r

As an application of GCD sums, we prove:

Theorem (La Bretèche, M., Tenenbaum 2019)

Sχ(M,N)� N1−1/rp(r+1)/4r2(log p)(η+o(1))/2r , η ≈ 0.16656.
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Multiplicative energy and a related problem

For two sets A,B ⊂ [1,N], we consider the multiplicative energy

E×(A,B) := | {m1, n1 ∈ A,m2, n2 ∈ B : m1m2 = n1n2} |.

Appears to be of great importance in additive combinatorics.
GCD sums are related to the quantity

E×(N,B) := | {1 6 m1, n1 6 N,m2, n2 ∈ B : m1m2 = n1n2} |.

In view of our applications, we need to bound E×(B,B).
Analogous question: How dense can we choose B ⊂ [1,N] such
that E×(B,B)� |B|2(logN)o(1).
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Minimization problem and main result

This is equivalent to estimate the quantity

EN := inf
B⊂[1,N]

N2E×(B,B)/|B|4.

Theorem (La Bretèche, M., Tenenbaum 2019)

Let δ := 1− 1+log2 2
log 2 ≈ 0.08607. When N tends to +∞, we have

(logN)δ(log2 N)3/2 � EN � (logN)δ
(

log2 N
)6
.

The exponent δ is the one appearing in the famous multiplication
table problem of Erdős:

H(N) = |
{
n ≤ N2 ∃a, b ≤ N, n = ab

}
� N2

(logN)δ+o(1) .
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Small moments of random multiplicative functions and
character sums

p → X (p) a random variable uniformly distributed on {z , |z | = 1}.
Random multiplicative function: X (n) =

∏
pα‖n X (p)α.

Conjecture(Helson):

E|
∑
n≤N

X (n)| = o(
√
N).

Harper (2018) proved the conjecture under the following form
E
∣∣∣∑n≤N X (n)

∣∣∣ � √
N

(log logN)1/4
.

Deterministic analogues?

We have more than square-root cancellation (Harper, announced)

1
p − 1

∑
χ 6=χ0

∣∣∣∣∣∣
∑
n6N

χ(n)

∣∣∣∣∣∣�
√
N

min
{

(log log L)1/4, (log log log p)1/4
}

where L = min {N, p/N}.
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Lower bounds for moments of character sums

Obtaining good lower bounds from the probabilistic methods used
by Harper seems hard.

Theorem (La Bretèche, M., Tenenbaum 2019)

For p sufficiently large and L := min(N, p/N), we have
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(log L)δ/2(log2 L)3

with δ/2 ≈ 0.043.
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Choice ofM and rough idea of the proof

Let Nk(N) denote the number of integers n 6 N such that
Ω(n) = k (where Ω(n) denote the total number of prime factors of
n, counted with multiplicity).
We have for κ := k/ log2 N

Nk(N) � N

(logN)Q(κ)
√

log2 N

where Q(x) = x log x − x + 1.
To prove the upper bound for T (N), we choose the set of integers
n ∈ (N/2,N) such that Ω(n) = κ log2 N and

Ω(n, t) :=
∑

pν‖n, p6t

ν 6 κ log2 3t + C (1 6 t 6 N).
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Local properties of divisors

Denote by Fk(N;C ) the number of integers n 6 N counted by
Nk(N) and such that

Ω(n, t) 6 κ log2 3t + C (1 6 t 6 N) (5)

with κ := k/ log2 x .

Lemma (Deduced from the work of Ford)

Let κ0 ∈]0, 2[. For 0 6 κ 6 κ0 and suitable C = C (κ0), we have

Fk(N;C ) � Nk(N)

k
(N > 3). (6)



Thank you for your attention!


