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Q = an algebraic closure of Q

We study the profinite group Gal(Q/Q) via its continuous representations:

Gal(Q/Q)→ GLn(A)

where A is a topological ring.
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For a “generic” elliptic curve, End(E ) = Z.

We say that E has complex multiplication by an imaginary quadratic field
K if

End(E ) = an order in K

If E has complex multiplication by K , then

ρE ∼= ρE ⊗ χK

where χK is the quadratic character of Gal(Q/Q) such that Qkerχ
= K .

This implies: up to conjugation,

Im ρE ⊂
{(
∗ 0
0 ∗

)}
∪
{(

0 ∗
∗ 0

)}
The image is “small”.
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If E has no CM, Serre proved that the image of ρE is “large”:

up to
conjugation,

Im ρE ⊃
(

1 + pnZp pnZp

pnZp 1 + pnZp

)
∩ SL2(Zp)

for some n, i.e., Im ρE contains a congruence subgroup of SL2(Zp).

In other words: the size of the image of ρE detects exactly whether E is
“special” or “generic”.
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We can build representations with coefficients in rings larger than Zp.

Given
ρ : Gal(Q/Q)→ GLn(A)

we can look at symmetries of the type

ρ⊗ χ ∼= ρ ◦ σ

where σ is an automorphism of A.

We call (σ, χ) a conjugate self-twist of ρ.

Conjugate self-twists form a group Σ.
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Easy: the size of Im ρ has a natural bound determined by all of its
conjugate self-twists:

AΣ = subring of A of elements fixed by all conjugate self-twists

(Usually:) There exists an open subgroup H of Gal(Q/Q) such that

ρ(H) ⊂ GL2(A0)

Question: Is Im ρ large in GL2(A0)?

(Does the size of Im ρ detect precisely the symmetries of ρ?)
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It is known how to build Galois representations from many objects: abelian
varieties, modular forms, automorphic representations of reductive groups.

For some of these we have a largeness result. For instance:

Theorem (Momose 1981, Ribet 1985)

For a non-CM cuspidal modular form f and almost all p, the image of the
p-adic Galois representation

ρf ,p : Gal(Q/Q)→ GL2(O)

attached to f contains a congruence subgroup of SL2(OΣ).

There are also results for Hilbert and Siegel modular forms (Nekovar,
Dieulefait–Zenteno), Hida and Coleman families of modular forms (Hida,
J. Lang, C.–Iovita–Tilouine), Siegel–Hida families (Hida–Tilouine).
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Belläıche proves a purely algebraic result:

Theorem (Belläıche 2017)

Consider a profinite group G, a local pro-p integral domain A and a
continuous representation

ρ : G → GL2(A).

Assume that ρ is irreducible, non-induced and “regular”. Then there exists
a subring A0 of A such that the image of ρ contains a congruence
subgroup of SL2(A0).



Ingredients:

1 replace representations by pseudorepresentations;

2 replace GL2(A) by the units in a generalized matrix algebra (GMA);

3 generalize Pink’s Lie algebra theory to GMAs.

1 and 2 are important for treating reducible residual representations, and
work in every dimension

3 only exists in dimension 2
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The description of A0 in terms of the conjugate self-twists of ρ is missing
from Belläıche’s result.

Theorem (C.–Lang–Medvedovsky 2019)

Consider a profinite group G, a local pro-p integral domain A and a
continuous representation

ρ : G → GL2(A).

Assume that ρ is irreducible, non-induced and “regular”. Then the image
of ρ contains a congruence subgroup of SL2(AΣ).

We can use this result to recover the known large image results.
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Strategy:

I with some tricks one can enlarge the residue field of Belläıche’s ring
to get a new ring A′0;

I conjugate self-twists of ρ can be lifted to conjugate self-twists of the
universal deformation ring of ρ;

I AΣ contains A′0, it is finite as a A′0-module, and their fields of
fractions coincide. ( =⇒ AΣ−large = A′0−large)

Questions:

I Can this result be generalized to higher dimension?

I How can one characterize the level of the congruence subgroup
contained in the image?
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Thank you for your attention!


