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We study the profinite group Gal(Q/Q) via its continuous representations:

Gal(@/Q) — GLa(A)

where A is a topological ring.
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E(Q) is equipped with a group structure.

The action of Gal(Q/Q) on

E[p™] = lim E[p"]

n

gives a continuous representation

PE - Gal(@/@) — GLz(ZP).
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The image is “small”.
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If E has no CM, Serre proved that the image of pg is “large”: up to
conjugation,

1+ p"Zp p"Zp
Tm pg O < oz, 1 i, ) (1SE2(Z)

for some n, i.e., Im pg contains a congruence subgroup of SLy(Zp).

In other words: the size of the image of pg detects exactly whether E is
“special” or “generic”.
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Given
p: Gal(Q/Q) — GLx(A)

we can look at symmetries of the type
pPRXEpeo

where ¢ is an automorphism of A.

We call (o, x) a conjugate self-twist of p.

Conjugate self-twists form a group X.
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Easy: the size of Im p has a natural bound determined by all of its
conjugate self-twists:

AT = subring of A of elements fixed by all conjugate self-twists
(Usually:) There exists an open subgroup H of Gal(Q/Q) such that

p(H) € GL2(Ao)

Question: Is Im p large in GL2(Ao)?
(Does the size of Im p detect precisely the symmetries of p?)
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It is known how to build Galois representations from many objects: abelian
varieties, modular forms, automorphic representations of reductive groups.

For some of these we have a largeness result. For instance:

Theorem (Momose 1981, Ribet 1985)

For a non-CM cuspidal modular form f and almost all p, the image of the
p-adic Galois representation

prp: Gal(Q/Q) — GL2(0)

attached to f contains a congruence subgroup of SLy(OF).

There are also results for Hilbert and Siegel modular forms (Nekovar,
Dieulefait—Zenteno), Hida and Coleman families of modular forms (Hida,
J. Lang, C.—lovita—Tilouine), Siegel-Hida families (Hida—Tilouine).



Bellaiche proves a purely algebraic result:

Theorem (Bellaiche 2017)

Consider a profinite group G, a local pro-p integral domain A and a
continuous representation

p: G — GLa(A).

Assume that p is irreducible, non-induced and “regular”. Then there exists
a subring Ag of A such that the image of p contains a congruence
subgroup of SLy(Ao).
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Ingredients:
@ replace representations by pseudorepresentations;
@ replace GLy(A) by the units in a generalized matrix algebra (GMA);
© generalize Pink’s Lie algebra theory to GMAs.

1 and 2 are important for treating reducible residual representations, and
work in every dimension

3 only exists in dimension 2
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Theorem (C.—Lang—Medvedovsky 2019)

Consider a profinite group G, a local pro-p integral domain A and a
continuous representation

P G — GLQ(A).

Assume that p is irreducible, non-induced and “regular”. Then the image
of p contains a congruence subgroup of SLy(AY).

We can use this result to recover the known large image results.
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Strategy:

» with some tricks one can enlarge the residue field of Bellaiche’s ring
to get a new ring Aj;

P> conjugate self-twists of p can be lifted to conjugate self-twists of the
universal deformation ring of p;

> AT contains Ajp, it is finite as a Aj-module, and their fields of
fractions coincide. (= AT —large = A|—large)

Questions:
» Can this result be generalized to higher dimension?

» How can one characterize the level of the congruence subgroup
contained in the image?



Thank you for your attention!



