Laura Paladino paladino@mat.unical.it

4th Number Theory Meeting Torino, October 25 2019

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Local-global problems

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

・ロト ・ 行下・ ・ ヨト ・ ヨト ・ ヨー

DEFINITION.

A global field is a finite extension of \mathbb{Q} or a finite extension of $\mathbb{F}_p(t)$.

DEFINITION.

A number field k is a finite extension of \mathbb{Q} .

DEFINITION.

An *absolute value* of a number field k is a function $| | : k \longrightarrow \mathbb{R}$ satisfying the following properties, for all $x, y \in k$.

(I) $|x| \ge 0$, e |x| = 0 if and only if x = 0(II) |xy| = |x||y|(III) $|x + y| \le |x| + |y|$

ション ふゆ く 山 マ チャット しょうくしゃ

DEFINITION.

A global field is a finite extension of \mathbb{Q} or a finite extension of $\mathbb{F}_p(t)$.

DEFINITION.

A number field k is a finite extension of \mathbb{Q} .

DEFINITION.

An *absolute value* of a number field k is a function $| | : k \longrightarrow \mathbb{R}$ satisfying the following properties, for all $x, y \in k$.

(I) $|x| \ge 0$, e |x| = 0 if and only if x = 0(II) |xy| = |x||y|(III) $|x + y| \le |x| + |y|$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

DEFINITION.

A global field is a finite extension of \mathbb{Q} or a finite extension of $\mathbb{F}_p(t)$.

DEFINITION.

A number field k is a finite extension of \mathbb{Q} .

DEFINITION.

An *absolute value* of a number field k is a function $| : k \longrightarrow \mathbb{R}$ satisfying the following properties, for all $x, y \in k$.

(I)
$$|x| \ge 0$$
, e $|x| = 0$ if and only if $x = 0$
(II) $|xy| = |x||y|$
(III) $|x + y| \le |x| + |y|$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

Examples.

- $|_{\infty}$ the usual absolute value over \mathbb{Q}
- Let $a = \frac{b}{c}$, with $b, c \in \mathbb{Z}$, coprime. Let p be a prime number. Assume

$$a=p'rac{b'}{c'}, \quad (b'c',p)=1$$

The function $| |_{p}$, defined by $|a|_{p} := \frac{1}{p^{I}}$, is an absolute value of \mathbb{Q} , named the *p-adic absolute value*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Examples.

- $| \quad |_{\infty}$ the usual absolute value over ${\mathbb Q}$
- Let $a = \frac{b}{c}$, with $b, c \in \mathbb{Z}$, coprime. Let p be a prime number. Assume

$$a = p' \frac{b'}{c'}, \quad (b'c', p) = 1$$

The function $| |_{p}$, defined by $|a|_{p} := \frac{1}{p^{l}}$, is an absolute value of \mathbb{Q} , named the *p-adic absolute value*.

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

Examples.

- $| \quad |_{\infty}$ the usual absolute value over ${\mathbb Q}$
- Let $a = \frac{b}{c}$, with $b, c \in \mathbb{Z}$, coprime. Let p be a prime number. Assume

$$a=p'rac{b'}{c'}, \quad (b'c',p)=1$$

The function $| |_p$, defined by $|a|_p := \frac{1}{p^l}$, is an absolute value of \mathbb{Q} , named the *p*-adic absolute value.

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

3

DEFINITION.

We say that two *absolute values* of k are equivalent if they induce the same topology over k.

OSTROWSKI'S THEOREM.

Every absolute value of \mathbb{Q} is equivalent to one of the absolute values $| \ |_{\infty}$ or $| \ |_{p}$.

DEFINITION.

The field obtained as a completion of \mathbb{Q} by the absolute value $| |_{p}$ is called *p*-adic field and it is denoted by \mathbb{Q}_{p} . The elements of \mathbb{Q}_{p} are called *p*-adic numbers.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

DEFINITION.

We say that two *absolute values* of k are equivalent if they induce the same topology over k.

OSTROWSKI'S THEOREM.

Every absolute value of $\mathbb Q$ is equivalent to one of the absolute values $|\ |_\infty$ or $|\ |_p.$

DEFINITION.

The field obtained as a completion of \mathbb{Q} by the absolute value $| |_{p}$ is called *p*-adic field and it is denoted by \mathbb{Q}_{p} . The elements of \mathbb{Q}_{p} are called *p*-adic numbers.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

DEFINITION.

We say that two *absolute values* of k are equivalent if they induce the same topology over k.

OSTROWSKI'S THEOREM.

Every absolute value of $\mathbb Q$ is equivalent to one of the absolute values $|\ |_\infty$ or $|\ |_p.$

DEFINITION.

The field obtained as a completion of \mathbb{Q} by the absolute value $| |_p$ is called *p*-adic field and it is denoted by \mathbb{Q}_p . The elements of \mathbb{Q}_p are called *p*-adic numbers.

DEFINITION.

We say that two *absolute values* of k are equivalent if they induce the same topology over k.

OSTROWSKI'S THEOREM.

Every absolute value of $\mathbb Q$ is equivalent to one of the absolute values $|\ |_\infty$ or $|\ |_p.$

DEFINITION.

The field obtained as a completion of \mathbb{Q} by the absolute value $| |_p$ is called *p*-adic field and it is denoted by \mathbb{Q}_p . The elements of \mathbb{Q}_p are called *p*-adic numbers.

イロト イロト イヨト イヨト 三日

DEFINITION.

A *local field* is a field obtained as a completion of a global field by one of its absolute values.

In particular the fields \mathbb{Q}_p are local fields.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

DEFINITION.

A *local field* is a field obtained as a completion of a global field by one of its absolute values.

In particular the fields \mathbb{Q}_p are local fields.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

DEFINITION.

A *local field* is a field obtained as a completion of a global field by one of its absolute values.

In particular the fields \mathbb{Q}_p are local fields.

HASSE PRINCIPLE, 1923-1924.

Let k be a number field and let $F(X_1, ..., X_n) \in k[X_1, ..., X_n]$ be a quadratic form. If F = 0 has a non-trivial solution in k_v , for all completions k_v of k, where v is a place of k, then F = 0 has a non-trivial solution in k.

The assumption that F is isotropic in k_v for all but finitely many completions implies the same conclusion.

Since then, many mathematicians have been concerned with similar so-called *local-global problems*, i.e. they have been questioning if, given a global field k, the validity of some properties for all but finitely many local fields k_v could ensure the validity of the same properties for k.

HASSE PRINCIPLE, 1923-1924.

Let k be a number field and let $F(X_1, ..., X_n) \in k[X_1, ..., X_n]$ be a quadratic form. If F = 0 has a non-trivial solution in k_v , for all completions k_v of k, where v is a place of k, then F = 0 has a non-trivial solution in k.

The assumption that F is isotropic in k_v for all but finitely many completions implies the same conclusion.

Since then, many mathematicians have been concerned with similar so-called *local-global problems*, i.e. they have been questioning if, given a global field k, the validity of some properties for all but finitely many local fields k_v could ensure the validity of the same properties for k.

HASSE PRINCIPLE, 1923-1924.

Let k be a number field and let $F(X_1, ..., X_n) \in k[X_1, ..., X_n]$ be a quadratic form. If F = 0 has a non-trivial solution in k_v , for all completions k_v of k, where v is a place of k, then F = 0 has a non-trivial solution in k.

The assumption that F is isotropic in k_v for all but finitely many completions implies the same conclusion.

Since then, many mathematicians have been concerned with similar so-called *local-global problems*, i.e. they have been questioning if, given a global field k, the validity of some properties for all but finitely many local fields k_v could ensure the validity of the same properties for k.

Notation

◆□ > < 個 > < E > < E > E 9 < 0</p>

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

\bar{k} the algebraic closure of k

G_k the absolute Galois group Gal(k/k)

 $G_k = \{ \sigma \in \operatorname{Aut}(\bar{k}) | \sigma(x) = x, \text{ for every } x \in k \}$

 M_k the set of places $v \in k$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- \bar{k} the algebraic closure of k
- G_k the absolute Galois group $\operatorname{Gal}(\bar{k}/k)$

$$G_k = \{ \sigma \in \operatorname{Aut}(\bar{k}) | \sigma(x) = x, \text{ for every } x \in k \}$$

 M_k the set of places $v \in k$

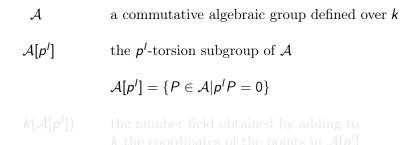
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- \bar{k} the algebraic closure of k
- G_k the absolute Galois group $\operatorname{Gal}(\bar{k}/k)$

$$G_k = \{ \sigma \in \operatorname{Aut}(\bar{k}) | \sigma(x) = x, \text{ for every } x \in k \}$$

 M_k the set of places $v \in k$

ション ふゆ アメリア メリア しょうくしゃ



(ロ)、(型)、(E)、(E)、 E) のQで

$$\begin{array}{ll} \mathcal{A} & \mbox{a commutative algebraic group defined over k} \\ \mathcal{A}[p'] & \mbox{the p'-torsion subgroup of \mathcal{A}} \\ & \mathcal{A}[p'] = \{P \in \mathcal{A} | p'P = 0\} \\ \\ k(\mathcal{A}[p']) & \mbox{the number field obtained by adding to} \\ & \mbox{k the coordinates of the points in $\mathcal{A}[p']$} \end{array}$$

The Local-Global Divisibility Problem

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

LOCAL-GLOBAL DIVISIBILITY PROBLEM. (DVORNICICH, ZANNIER, 2001)

Let $P \in \mathcal{A}(k)$. Suppose for all but finitely many $v \in M_k$, there exists $D_v \in \mathcal{A}(k_v)$ such that $P = p^l D_v$. Is it possible to conclude that there exists $D \in \mathcal{A}(k)$ such that $P = p^l D$?

ション ふゆ く 山 マ チャット しょうくしゃ

LOCAL-GLOBAL DIVISIBILITY PROBLEM. (DVORNICICH, ZANNIER, 2001)

Let $P \in \mathcal{A}(k)$. Suppose for all but finitely many $v \in M_k$, there exists $D_v \in \mathcal{A}(k_v)$ such that $P = p'D_v$. Is it possible to conclude that there exists $D \in \mathcal{A}(k)$ such that P = p'D?

ション ふゆ アメリア メリア しょうくしゃ

LOCAL-GLOBAL DIVISIBILITY PROBLEM. (DVORNICICH, ZANNIER, 2001)

Let $P \in \mathcal{A}(k)$. Suppose for all but finitely many $v \in M_k$, there exists $D_v \in \mathcal{A}(k_v)$ such that $P = p^l D_v$. Is it possible to conclude that there exists $D \in \mathcal{A}(k)$ such that $P = p^l D$?

ション ふゆ く 山 マ チャット しょうくしゃ

LOCAL-GLOBAL DIVISIBILITY PROBLEM. (DVORNICICH, ZANNIER, 2001)

Let $P \in \mathcal{A}(k)$. Suppose for all but finitely many $v \in M_k$, there exists $D_v \in \mathcal{A}(k_v)$ such that $P = p^l D_v$. Is it possible to conclude that there exists $D \in \mathcal{A}(k)$ such that $P = p^l D$?

うして ふゆう ふほう ふほう うらう

LOCAL-GLOBAL DIVISIBILITY PROBLEM. (DVORNICICH, ZANNIER, 2001)

Let $P \in \mathcal{A}(k)$. Suppose for all but finitely many $v \in M_k$, there exists $D_v \in \mathcal{A}(k_v)$ such that $P = p^l D_v$. Is it possible to conclude that there exists $D \in \mathcal{A}(k)$ such that $P = p^l D$?

DEFINITION.

Let G be a group and let M be a G-module. A cocycle of G with values in M (or a crossed homomorphism of G in M) is a map

$$Z: G \longrightarrow M$$
$$\sigma \mapsto Z_{\sigma}$$

such that

$$Z_{\sigma\tau}=Z_{\sigma}+\sigma(Z_{\tau}),$$

for every $\sigma, \tau \in G$.

The cocycles of G with values in M form a group denoted by Z(G, M).

ション ふゆ アメリア メリア しょうくしゃ

DEFINITION.

Let G be a group and let M be a G-module. A cocycle of G with values in M (or a crossed homomorphism of G in M) is a map

$$Z: G \longrightarrow M$$
$$\sigma \mapsto Z_{\sigma}$$

such that

$$Z_{\sigma\tau}=Z_{\sigma}+\sigma(Z_{\tau}),$$

for every $\sigma, \tau \in G$.

The cocycles of G with values in M form a group denoted by Z(G, M).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

DEFINITION.

Let G be a group and let M be a G-module. A coboundary of G with value in M is a cocycle Z of G with value in M such that

$$Z_{\sigma} = (\sigma - 1)A,$$

for some $A \in M$.

The coboundaries of G with values in M form a group denoted by B(G, M).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

DEFINITION.

Let G be a group and let M be a G-module. A coboundary of G with value in M is a cocycle Z of G with value in M such that

$$Z_{\sigma} = (\sigma - 1)A,$$

for some $A \in M$.

The coboundaries of G with values in M form a group denoted by B(G, M).

ション ふゆ アメリア メリア しょうくしゃ

DEFINITION.

Let G be a group and let M be a G-module. The first cohomology group of G with values in M is defined as the quotient Z(G, M)/B(G, M) and it is denoted by $H^1(G, M)$.

$$Z_{\sigma} := \sigma(D) - D, \quad \sigma \in G_k.$$

PROPOSITION.

The class of Z is 0 in $H^1(G_k, \mathcal{A}[p^l])$, if and only if there exists $D' \in \mathcal{A}(k)$ such that p'D' = P.

COROLLARY

If $H^1(G_k, \mathcal{A}[p']) = 0$, then the local-global divisibility by p' holds in \mathcal{A} over k.

Let $\Sigma \subseteq M_k$, containing all the places v, for which the hypotheses of the problem hold. Then Z vanishes in $H^1(G_{k_v}, \mathcal{A}[p'])$, for every $v \in \Sigma$.

(日) (四) (日) (日) (日)

$$Z_{\sigma} := \sigma(D) - D, \quad \sigma \in G_k.$$

PROPOSITION.

The class of Z is 0 in $H^1(G_k, \mathcal{A}[p'])$, if and only if there exists $D' \in \mathcal{A}(k)$ such that p'D' = P.

COROLLARY

If $H^1(G_k, \mathcal{A}[p']) = 0$, then the local-global divisibility by p' holds in \mathcal{A} over k.

Let $\Sigma \subseteq M_k$, containing all the places v, for which the hypotheses of the problem hold. Then Z vanishes in $H^1(G_{k_v}, \mathcal{A}[p'])$, for every $v \in \Sigma$.

$$Z_{\sigma} := \sigma(D) - D, \quad \sigma \in G_k.$$

PROPOSITION.

The class of Z is 0 in $H^1(G_k, \mathcal{A}[p'])$, if and only if there exists $D' \in \mathcal{A}(k)$ such that p'D' = P.

COROLLARY

If $H^1(G_k, \mathcal{A}[p^l]) = 0$, then the local-global divisibility by p^l holds in \mathcal{A} over k.

Let $\Sigma \subseteq M_k$, containing all the places v, for which the hypotheses of the problem hold. Then Z vanishes in $H^1(G_{k_v}, \mathcal{A}[p'])$, for every $v \in \Sigma$.

$$Z_{\sigma} := \sigma(D) - D, \quad \sigma \in G_k.$$

PROPOSITION.

The class of Z is 0 in $H^1(G_k, \mathcal{A}[p'])$, if and only if there exists $D' \in \mathcal{A}(k)$ such that p'D' = P.

COROLLARY

If $H^1(G_k, \mathcal{A}[p^l]) = 0$, then the local-global divisibility by p^l holds in \mathcal{A} over k.

Let $\Sigma \subseteq M_k$, containing all the places v, for which the hypotheses of the problem hold. Then Z vanishes in $H^1(G_{k_v}, \mathcal{A}[p'])$, for every $v \in \Sigma$.

ション ふゆ く 山 マ チャット しょうくしゃ

$$Z_{\sigma} := \sigma(D) - D, \quad \sigma \in G_k.$$

PROPOSITION.

The class of Z is 0 in $H^1(G_k, \mathcal{A}[p'])$, if and only if there exists $D' \in \mathcal{A}(k)$ such that p'D' = P.

COROLLARY

If $H^1(G_k, \mathcal{A}[p^l]) = 0$, then the local-global divisibility by p^l holds in \mathcal{A} over k.

Let $\Sigma \subseteq M_k$, containing all the places v, for which the hypotheses of the problem hold. Then Z vanishes in $H^1(G_{k_v}, \mathcal{A}[p'])$, for every $v \in \Sigma$.

The local-global divisibility problem

- 日本 - (理本 - (日本 - (日本 - 日本

The first local cohomology group of A over k is defined as

$$H^1_{\text{loc}}(G, \mathcal{A}[p']) := \bigcap_{v \in \Sigma} \ker\{H^1(G_k, \mathcal{A}[p']) \xrightarrow{\text{res}_v} H^1(G_{k_v}, \mathcal{A}[p'])\}.$$

where res_v is the usual restriction map and $G = \operatorname{Gal}(k(\mathcal{A}[p'])/k)$.

PROPOSITION. (DVORNICICH, ZANNIER, 2001)

If $H^1_{loc}(G, \mathcal{A}[p^l]) = 0$, then the local-global divisibility by p^l holds in \mathcal{A} over k.

ション ふゆ アメリア メリア しょうくしゃ

The first local cohomology group of A over k is defined as

$$H^1_{\text{loc}}(G, \mathcal{A}[p']) := \bigcap_{v \in \Sigma} \ker\{H^1(G_k, \mathcal{A}[p']) \xrightarrow{\text{res}_v} H^1(G_{k_v}, \mathcal{A}[p'])\}.$$

where res_v is the usual restriction map and $G = \operatorname{Gal}(k(\mathcal{A}[p'])/k)$.

PROPOSITION. (DVORNICICH, ZANNIER, 2001)

If $H^1_{loc}(G, \mathcal{A}[p^l]) = 0$, then the local-global divisibility by p^l holds in \mathcal{A} over k.

ション ふゆ アメリア メリア しょうくしゃ

The first local cohomology group of A over k is defined as

$$H^1_{\text{loc}}(G, \mathcal{A}[p']) := \bigcap_{v \in \Sigma} \ker\{H^1(G_k, \mathcal{A}[p']) \xrightarrow{\text{res}_v} H^1(G_{k_v}, \mathcal{A}[p'])\}.$$

where res_v is the usual restriction map and $G = \operatorname{Gal}(k(\mathcal{A}[p'])/k)$.

PROPOSITION. (DVORNICICH, ZANNIER, 2001)

If $H^1_{loc}(G, \mathcal{A}[p']) = 0$, then the local-global divisibility by p' holds in \mathcal{A} over k.

The local-global divisibility problem

$H^1_{\text{loc}}(G, \mathcal{A}[p']) = \bigcap_{v \in \Sigma} \ker\{H^1(G_k, \mathcal{A}[p']) \xrightarrow{\text{res}_v} H^1(G_{k_v}, \mathcal{A}[p'])\}.$

This definition is very similar to the one of the Tate-Shafarevich group

 $\operatorname{III}(k, \mathcal{A}[p']) := \bigcap_{v \in M_k} \ker\{H^1(G_k, \mathcal{A}[p']) \xrightarrow{\operatorname{res}_v} H^1(G_{k_v}, \mathcal{A}[p'])\}.$

ション ふゆ く 山 マ チャット しょうくしゃ

The local-global divisibility problem

$$H^1_{\text{loc}}(G, \mathcal{A}[p']) = \bigcap_{v \in \Sigma} \ker\{H^1(G_k, \mathcal{A}[p']) \xrightarrow{\text{res}_v} H^1(G_{k_v}, \mathcal{A}[p'])\}.$$

This definition is very similar to the one of the Tate-Shafarevich group

$$\operatorname{III}(k, \mathcal{A}[p']) := \bigcap_{v \in M_k} \ker\{H^1(G_k, \mathcal{A}[p']) \xrightarrow{\operatorname{res}_v} H^1(G_{k_v}, \mathcal{A}[p'])\}.$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 _ のへで

Cassels' question

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

ション ふゆ く 山 マ チャット しょうくしゃ

CASSELS' QUESTION, 1962.

Let k be a number field and $\mathcal{E}: y^2 = x^3 + bx + c$ an elliptic curve defined over k. Are the elements of $\operatorname{III}(k, \mathcal{E})$ infinitely divisible by a prime p when considered as elements of the group $H^1(G_k, \mathcal{E})$?

PROPOSITION.

If $\operatorname{III}(k, \mathcal{E}[p']) = 0$, for every *l*, then Cassels' question has an affirmative answer for *p*.

うして ふゆう ふほう ふほう うらう

CASSELS' QUESTION, 1962.

Let k be a number field and $\mathcal{E}: y^2 = x^3 + bx + c$ an elliptic curve defined over k. Are the elements of $\operatorname{III}(k, \mathcal{E})$ infinitely divisible by a prime p when considered as elements of the group $H^1(G_k, \mathcal{E})$?

PROPOSITION.

If $III(k, \mathcal{E}[p^{l}]) = 0$, for every *l*, then Cassels' question has an affirmative answer for *p*.

◆□ > < 個 > < E > < E > E 9 < 0</p>

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(TATE, 1962)

Cassels' question has an affirmative answer for the divisibility by p (one time).

The question for the divisibility by powers of p remained open for decades, for every p.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

(TATE, 1962)

Cassels' question has an affirmative answer for the divisibility by p (one time).

The question for the divisibility by powers of p remained open for decades, for every p.

THEOREM. (P., RANIERI, VIADA, 2012)

The local-global divisibility by p^{l} holds in \mathcal{E} over k, for all $p > (3^{[k:\mathbb{Q}]/2} + 1)^2$ and $l \ge 1$.

COROLLARY. (P., RANIERI, VIADA, 2012)

Cassels' question has an affirmative answer over k for all $p > (3^{[k:\mathbb{Q}]/2} + 1)^2$.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・ の へ ()・

THEOREM. (P., RANIERI, VIADA, 2012)

The local-global divisibility by p^{l} holds in \mathcal{E} over k, for all $p > (3^{[k:\mathbb{Q}]/2} + 1)^2$ and $l \ge 1$.

COROLLARY. (P., RANIERI, VIADA, 2012)

Cassels' question has an affirmative answer over k for all $p > (3^{[k:\mathbb{Q}]/2} + 1)^2$.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・ 今 へ ?

ション ふゆ く 山 マ チャット しょうくしゃ

THEOREM. (P., RANIERI, VIADA, 2012-2014)

The local-global divisibility by p^{l} holds in \mathcal{E} over \mathbb{Q} , for all $p \geq 5$ and $l \geq 1$.

Corollary. (P., Ranieri, Viada, 2012-2014)

Cassels' question has an affirmative answer over $\mathbb Q$ for all $p \ge 5$.

A second proof.

Theorem. (Çiperiani, Stix, 2015)

Cassels' question has an affirmative answer in elliptic curves defined over $\mathbb{Q},$ for all $p\geq 11.$

ション ふゆ く 山 マ チャット しょうくしゃ

THEOREM. (P., RANIERI, VIADA, 2012-2014)

The local-global divisibility by p^{l} holds in \mathcal{E} over \mathbb{Q} , for all $p \geq 5$ and $l \geq 1$.

COROLLARY. (P., RANIERI, VIADA, 2012-2014)

Cassels' question has an affirmative answer over \mathbb{Q} for all $p \geq 5$.

A second proof.

Theorem. (Çiperiani, Stix, 2015)

Cassels' question has an affirmative answer in elliptic curves defined over \mathbb{Q} , for all $p \ge 11$.

THEOREM. (P., RANIERI, VIADA, 2012-2014)

The local-global divisibility by p^{l} holds in \mathcal{E} over \mathbb{Q} , for all $p \geq 5$ and $l \geq 1$.

COROLLARY. (P., RANIERI, VIADA, 2012-2014)

Cassels' question has an affirmative answer over \mathbb{Q} for all $p \geq 5$.

A second proof.

THEOREM. (ÇIPERIANI, STIX, 2015)

Cassels' question has an affirmative answer in elliptic curves defined over $\mathbb{Q},$ for all $p\geq 11.$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Counterexamples

in elliptic curves over \mathbb{Q} for all 2^n , with $n \ge 2$ (P., 2011);

in elliptic curves over \mathbb{Q} for all 3^n , with $n \ge 2$ (Creutz, 2016).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Counterexamples

in elliptic curves over \mathbb{Q} for all 2^n , with $n \ge 2$ (P., 2011);

in elliptic curves over \mathbb{Q} for all 3^n , with $n \ge 2$ (Creutz, 2016).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Counterexamples

in elliptic curves over \mathbb{Q} for all 2^n , with $n \ge 2$ (P., 2011);

in elliptic curves over \mathbb{Q} for all 3^n , with $n \ge 2$ (Creutz, 2016).

ション ふゆ く 山 マ チャット しょうくしゃ

THEOREM. (P., 2019)

Let p be a prime number. Let k be a number field and let A be a commutative algebraic group defined over k, with $\mathcal{A}[p] \simeq (\mathbb{Z}/p\mathbb{Z})^n$.

Assume that $\mathcal{A}[p]$ is an irreducible *N*-module or a direct sum of irreducible *N*-modules, for every subnormal subgroup *N* of $\operatorname{Gal}(k(\mathcal{A}[p'])/k)$. If $p > \frac{n}{2} + 1$, then the local-global divisibility by *p* holds in \mathcal{A} over *k* and $\operatorname{III}(k, \mathcal{A}[p]) = 0$.

ション ふゆ く 山 マ チャット しょうくしゃ

THEOREM. (P., 2019)

Let p be a prime number. Let k be a number field and let \mathcal{A} be a commutative algebraic group defined over k, with $\mathcal{A}[p] \simeq (\mathbb{Z}/p\mathbb{Z})^n$. Assume that $\mathcal{A}[p]$ is an irreducible N-module or a direct sum of irreducible

N-modules, for every subnormal subgroup *N* of $\operatorname{Gal}(k(\mathcal{A}[p'])/k)$.

If $p > \frac{n}{2} + 1$, then the local-global divisibility by p holds in A over k and $\operatorname{III}(k, \overline{A}[p]) = 0$.

ション ふゆ く 山 マ チャット しょうくしゃ

THEOREM. (P., 2019)

Let p be a prime number. Let k be a number field and let \mathcal{A} be a commutative algebraic group defined over k, with $\mathcal{A}[p] \simeq (\mathbb{Z}/p\mathbb{Z})^n$. Assume that $\mathcal{A}[p]$ is an irreducible N-module or a direct sum of irreducible N-modules, for every subnormal subgroup N of $\operatorname{Gal}(k(\mathcal{A}[p^l])/k)$. If $p > \frac{n}{2} + 1$, then the local-global divisibility by p holds in \mathcal{A} over k and $\operatorname{III}(k, \mathcal{A}[p]) = 0$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

THEOREM. (P., 2019)

Let p be a prime number. Let G be a group and let $M = (\mathbb{Z}/p\mathbb{Z})^n$ a G-module.

Assume that M is an irreducible N-module or a direct sum of irreducible N-modules, for every subnormal subgroup N of G.

If
$$p > \left(\frac{n}{2} + 1\right)^2$$
, then $H^1(G, M) = 0$.

ション ふゆ く 山 マ チャット しょうくしゃ

THEOREM. (P., 2019)

Let p be a prime number. Let G be a group and let $M = (\mathbb{Z}/p\mathbb{Z})^n$ a G-module.

Assume that M is an irreducible N-module or a direct sum of irreducible N-modules, for every subnormal subgroup N of G.

If $p > (\frac{n}{2} + 1)^{2}$, then $H^{1}(G, M) = 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

THEOREM. (P., 2019)

Let p be a prime number. Let G be a group and let $M = (\mathbb{Z}/p\mathbb{Z})^n$ a G-module.

Assume that M is an irreducible N-module or a direct sum of irreducible N-modules, for every subnormal subgroup N of G.

If
$$p > (\frac{n}{2} + 1)^2$$
, then $H^1(G, M) = 0$.

Thank you for your attention!

◆□ > < 個 > < E > < E > E 9 < 0</p>