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Definition.
A global field is a finite extension of Q or a finite extension of Fp(t).

Definition.
A number field k is a finite extension of Q.

Definition.
An absolute value of a number field k is a function | | : k −→ R
satisfying the following properties, for all x , y ∈ k .

(i) |x | ≥ 0, e |x | = 0 if and only if x = 0
(ii) |xy | = |x ||y |
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Examples.

• | |∞ the usual absolute value over Q
• Let a =b

c , with b, c ∈ Z, coprime. Let p be a prime number. Assume

a = pl b
′

c ′
, (b′c ′, p) = 1

The function | |p, defined by |a|p := 1
pl , is an absolute value of Q,

named the p-adic absolute value.
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Definition.
We say that two absolute values of k are equivalent if they induce the
same topology over k .

Ostrowski’s Theorem.
Every absolute value of Q is equivalent to one of the absolute values | |∞
or | |p.

Definition.
The field obtained as a completion of Q by the absolute value | |p is
called p-adic field and it is denoted by Qp. The elements of Qp are called
p-adic numbers.
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Local-global problems

Hasse Principle, 1923-1924.

Let k be a number field and let F (X1, ...,Xn) ∈ k[X1, ...,Xn] be a
quadratic form. If F = 0 has a non-trivial solution in kv , for all
completions kv of k , where v is a place of k , then F = 0 has a non-trivial
solution in k .

The assumption that F is isotropic in kv for all but finitely many
completions implies the same conclusion.

Since then, many mathematicians have been concerned with similar
so-called local-global problems, i.e. they have been questioning if, given a
global field k , the validity of some properties for all but finitely many local
fields kv could ensure the validity of the same properties for k .
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Local-Global Divisibility Problem. (Dvornicich, Zannier,
2001)

Let P ∈ A(k). Suppose for all but finitely many v ∈ Mk , there exists
Dv ∈ A(kv ) such that P = plDv . Is it possible to conclude that there
exists D ∈ A(k) such that P = plD?

This problem has a cohomological interpretation.
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Definition.
Let G be a group and let M be a G -module. A cocycle of G with values
in M (or a crossed homomorphism of G in M) is a map

Z :G −→ M
σ 7→ Zσ

such that
Zστ = Zσ + σ(Zτ ),

for every σ, τ ∈ G .

The cocycles of G with values in M form a group denoted by Z (G ,M).
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Let D ∈ A(k̄) such that plD = P . We can define a cocycle of Gk with
values in A[pl ] by setting

Zσ := σ(D)− D, σ ∈ Gk .

Proposition.
The class of Z is 0 in H1(Gk ,A[pl ]), if and only if there exists D ′ ∈ A(k)
such that plD ′ = P .

Corollary
If H1(Gk ,A[pl ]) = 0, then the local-global divisibility by pl holds in A
over k .

Let Σ ⊆ Mk , containing all the places v , for which the hypotheses of the
problem hold. Then Z vanishes in H1(Gkv ,A[pl ]), for every v ∈ Σ.
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Cassels’ Question, 1962.

Let k be a number field and E : y2 = x3 + bx + c an elliptic curve defined
over k . Are the elements of X(k , E) infinitely divisible by a prime p when
considered as elements of the group H1(Gk , E)?

Proposition.
If X(k , E [pl ]) = 0, for every l , then Cassels’ question has an affirmative
answer for p.
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N-modules, for every subnormal subgroup N of Gal(k(A[pl ])/k).
If p > n

2 + 1, then the local-global divisibility by p holds in A over k and
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