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DEFINITION.
A global field is a finite extension of Q or a finite extension of F,(t).

DEFINITION.

A number field k is a finite extension of Q.

DEFINITION.
An absolute value of a number field k is a function | |: k — R

satisfying the following properties, for all x, y € k.
(1) |x| >0, e|x|=0if and only if x =0

(1) Pyl = Ix[lyl
(1) x +y| < |x| + ly|
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Examples.

® | |0 the usual absolute value over Q

o Let a :l—;, with b, ¢ € Z, coprime. Let p be a prime number. Assume

/

a:p’?, (b'c,p)=1

1
YR

> is an absolute value of Q,

The function | |, defined by |a|, :=
named the p-adic absolute value.
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DEFINITION.

We say that two absolute values of k are equivalent if they induce the
same topology over k.

OSTROWSKI’S THEOREM.

Every absolute value of Q is equivalent to one of the absolute values | |
or | |p.

DEFINITION.

The field obtained as a completion of Q by the absolute value | |, is
called p-adic field and it is denoted by Q,. The elements of Q, are called
p-adic numbers.
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LOCAL-GLOBAL PROBLEMS

DEFINITION.

A local field is a field obtained as a completion of a global field by one of
its absolute values.

In particular the fields Q, are local fields.
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HASSE PRINCIPLE, 1923-1924.

Let k be a number field and let F(Xy,..., X,) € k[ X1, ..., X,] be a
quadratic form. If F = 0 has a non-trivial solution in k,, for all
completions k, of k, where v is a place of k, then F = 0 has a non-trivial
solution in k.

The assumption that F is isotropic in k, for all but finitely many
completions implies the same conclusion.

Since then, many mathematicians have been concerned with similar
so-called local-global problems, i.e. they have been questioning if, given a
global field k, the validity of some properties for all but finitely many local
fields k, could ensure the validity of the same properties for k.
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the algebraic closure of k
the absolute Calois group Gal(k/k)
Gk = {0 € Aut(k)|o(x) = x, for every x € k}

the set of places v € k
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A a commutative algebraic group defined over k
Alp'] the p'-torsion subgroup of A

Alp'l = {P e Alp'P =0}



Alp']

k(A[P'T)

NoTATION

a commutative algebraic group defined over k
the p'-torsion subgroup of A
Alp'l = {P e Alp'P =0}

the number field obtained by adding to
k the coordinates of the points in A[p]
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LOCAL-GLOBAL DIVISIBILITY PROBLEM. (DVORNICICH, ZANNIER,
2001)

Let P € A(k). Suppose for all but finitely many v € My, there exists
D, € A(k,) such that P = p/D,. Is it possible to conclude that there
exists D € A(k) such that P = p/D?

This problem has a cohomological interpretation.
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DEFINITION.

Let G be a group and let M be a G-module. A coboundary of G with
value in M is a cocycle Z of G with value in M such that

Zy = (0 —1)A,

for some A € M.

The coboundaries of G with values in M form a group denoted by
B(G, M).



THE LOCAL-GLOBAL DIVISIBILITY PROBLEM

DEFINITION.

Let G be a group and let M be a G-module. The first cohomology group
of G with values in M is defined as the quotient Z(G, M)/B(G, M) and
it is denoted by H(G, M).
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Let D € A(k) such that p/D = P. We can define a cocycle of Gy with
values in A[p'] by setting

Z, :=0(D)—D, o€ G.

PROPOSITION.

The class of Z is 0 in H(Gy, A[p']), if and only if there exists D’ € A(k)
such that p'D’ = P.

COROLLARY
If H(Gy, A[p']) = 0, then the local-global divisibility by p’ holds in A
over k.

Let ¥ C M,, containing all the places v, for which the hypotheses of the
problem hold. Then Z vanishes in H}(Gy,, A[p']), for every v € .
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The first local cohomology group of A over k is defined as
Hioo(G, AlP'T) = Nyex ker{H (i Alp']) = H'(Gi,., AlP'])}-

where res, is the usual restriction map and G = Gal(k(A[p'])/k).

PROPOSITION. (DVORNICICH, ZANNIER, 2001)

If HL (G, A[p']) = 0, then the local-global divisibility by p' holds in .A
over k.
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res,

Hite (G AlP') = Nyex ker{H! (G, A[p']) —— H*(Gy,, AlP'])}-

This definition is very similar to the one of the Tate-Shafarevich group

res,

II(k, Alp']) == Nyem, ker{H(Gk, A[p']) —— H'(Gx,, A[P'])}.
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CASSELS’ QUESTION

CASSELS’ QUESTION, 1962.

Let k be a number field and £ : y? = x3 + bx + ¢ an elliptic curve defined
over k. Are the elements of ITI(k, &) infinitely divisible by a prime p when
considered as elements of the group H(Gy, £)?

PROPOSITION.

If IIT(k, E[p']) = 0, for every /, then Cassels’ question has an affirmative
answer for p.
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(TATE, 1962)

Cassels’ question has an affirmative answer for the divisibility by p (one
time).

The question for the divisibility by powers of p remained open for
decades, for every p.
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THEOREM. (P., RANIERI, VIADA, 2012)

The local-global divisibility by p holds in £ over k, for all
p> (3W/2 L 1)2 and [ > 1.

COROLLARY. (P., RANIERI, VIADA, 2012)

Cassels’ question has an affirmative answer over k for all
p > (3[k :QJ/2 1)2
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SOLUTIONS

THEOREM. (P., RANIERI, VIADA, 2012-2014)

The local-global divisibility by p’ holds in & over Q, for all p > 5 and
[ >1.

COROLLARY. (P., RANIERI, VIADA, 2012-2014)

Cassels’ question has an affirmative answer over Q for all p > 5.

A second proof.

THEOREM. (CIPERIANI, STIX, 2015)

Cassels' question has an affirmative answer in elliptic curves defined over
Q, for all p > 11.
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Counterexamples
in elliptic curves over Q for all 27, with n >2 (P., 2011);

in elliptic curves over Q for all 3", with n > 2 (Creutz, 2016).
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commutative algebraic group defined over k, with A[p] ~ (Z/pZ)".

Assume that A[p] is an irreducible N-module or a direct sum of irreducible
N-modules, for every subnormal subgroup N of Gal(k(A[p'])/k).

If p > g + 1, then the local-global divisibility by p holds in A over k and
(&, Alp]) = 0.
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SOLUTIONS

THEOREM. (P., 2019)

Let p be a prime number. Let G be a group and let M = (Z/pZ)" a
G-module.

Assume that M is an irreducible N-module or a direct sum of irreducible
N-modules, for every subnormal subgroup N of G.

2
If p > (g + 1)  then H(G, M) = 0.



Thank you for your attention!



