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Francesco Veneziano

DIMA
Università di Genova

24 ottobre 2019



Continued Fractions

A continued fraction is an expression of the form

[a0, a1, . . . , an] := a0 +
1

a1 +
1

. . . +
1

an−1 +
1

an

=
pn
qn

In the classical setting, we take the ai to be positive integers. In
this case it make sense to consider an infinite sequence of ai ’s and
the corresponding limit of the values pn/qn.
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Continued Fraction Expansion

Starting from a real number α = α0 we define the iteration

an = bαnc
αn+1 = (αn − an)−1

and the recurrences

pn = anpn−1 + pn−2, p−1 = 1, p−2 = 0,

qn = anqn−1 + qn−2, q−1 = 0, q−2 = 1.

The an are called partial quotients
The αn are called complete quotients
The pn/qn are called convergents
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Classical results

lim
n→∞

[a0, . . . , an] = lim
n→∞

pn/qn = α

The expansion is essentially unique
The iteration stops if and only if α is rational
The expansion is eventually periodic if and only if α is a quadratic
irrational (Lagrange)
The convergents provide very good rational approximations to α.
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A Question of Rosen

Question (Rosen ’77)

Is it possible to devise a continued fraction that represents uniquely
all real numbers, so that the finite continued fractions represent the
elements of an algebraic number field, and conversely, every element
of the number field is represented by a finite continued fraction?

Rosen gives one example of such a construction for the field Q(
√

5)

and partial quotients which are integral multiples of φ = 1+
√

5
2 .

Bernat ’06 gives a different construction again for Q(
√

5).
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β-expansions

Let β > 1 be an algebraic integer. Any real number x can be
expanded in base-β as

x = ±
k∑

i=−∞
xiβ

i .

The digits xi belong to the set {0, 1, . . . , dβe − 1}, and are selected
according to a greedy algorithm.

Not all expansions are admissible. φ2 = φ+ 1
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β-integers

Consider the set Zβ of the real numbers whose β-expansion uses
only non-negative powers of β. These numbers are called
β-integers.

They form a discrete subset of the algebraic integers in the field
Q(β).
For some special β’s e.g. for Pisot numbers, it it possible to give
an algebraic characterization of this set in terms of their algebraic
conjugates.
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β-fractionary expansion

For a positive real number x , define

bxcβ = max{a ∈ Zβ | a ≤ x}.

Replace b·c by b·cβ in the definition of the continued fraction
expansion.

Bernat proved that for β = φ this construction solves Rosen’s
problem for the field Q(

√
5). The proof is intricate, it uses that φ

is a quadratic Pisot number smaller than 2.

Question (Bernat ’06)

For which other numbers (quadratic Pisot) does the same conclusion
hold?
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Periodicity and finiteness for the β-fractionary expansion

Let β > 1 be an algebraic integer.

(CFP)

We say that β has the (CFP) property if the β-fractionary expansion
of every element of Q(β) if finite or eventually periodic.

(CFF)

We say that β has the (CFF) property if the β-fractionary expansion
of every element of Q(β) if finite.
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Results on quadratic β’s

From now on, let β > 1 be a quadratic integer, and let β′ be its
algebraic conjugate.

Theorem (Másáková,V,Vávra)

If |β′| < β (Perron numbers), then (CFP) holds.
Every purely periodic element in Q(β) has partial quotients in
{1, . . . , bβc}.

We use an argument of diophantine approximation and a
comparison lemma to estimate the relative growhts of the
sequences pn, qn and their conjugates.
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Theorem (Másáková,V,Vávra)

The four Perron numbers

1 +
√

5

2
, 1 +

√
2,

1 +
√

13

2
,

1 +
√

17

2

have (CFF), and are the only quadratic Perron numbers smaller
than 3 with property (CFF).

We apply the previous theorem and argue about admissible
sequences of partial quotients.

164 + 65
√

17

251
= [1, 1, 2, 1, 1, 2, 2, 2, 2]

164 + 65
√

17

251
= [1, 1, β, 2β3 + β2 + 1, β3 + β + 1, 2, β + 1]
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Conjecture (McMullen ’08)

Every real quadratic number field contains infinitely many elements
whose (classical) continued fraction expansion consists only in 1’s
and 2’s.

Conjecture (Mercat ’13)

Every real quadratic number field contains one element whose
(classical) continued fraction expansion consists only in 1’s and 2’s.

Under Mercat’s conjecture, no quadratic β > 3 can have property
(CFF).
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Theorem (Másáková,V,Vávra)

If β′ > β, then (CFP) never holds.
Every purely periodic elements in Q(β) has partial quotients in
{1, . . . , bβc}.

We use an argument of algebraic number theory and a
characterization of pure periodicity.
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