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Abstract

It is a famous result that the set of quotients of prime numbers is dense in the set of positive
real numbers. It is a motivation to wide study of denseness properties of subsets of positive
integers on real half-line, see e.g. [1, 11, 12, 14]. One can meet it as an exercise on course of
number theory, see [2, Problem 218], [3, Ex. 4.19], [9, Ex. 7, p. 107], [10, Thm. 4] and also in
several articles, e.g. [4, Cor. 4], [6, Thm. 4], [13, Cor. 2] (according to the last reference, the
result was known to Sierpiski, who credits it to Schinzel [8]). The authors of [4] generalized
this result to the subsets of prime numbers in given arithmetic progressions.

Motivated by the article [5] on “light” subsets of positive integers (i.e. subsets with slowly

growing counting fuctions) we focus on the family of subsets Pk = {p(k)1 < p
(k)
2 < p

(k)
3 < ...},

k ∈ N, of prime numbers such that every next set contains these elements of the preceding
one indexed by prime numbers. As a consequence, every next set is a zero asymptotic density
subset of the preceding one. Although the sets Pk are “lighter and lighter” as k increases, we
will show that all of them have dense quotient sets in the set of positive real numbers. We will

also study the sets PT
n = {p(k)n : k ∈ N}, n ∈ N, and DiagP = {p(k)k : k ∈ N}. We will prove

that, in the opposition to the sets Pk, their quotient sets are not dense in R+.
This is a joint work with János T. Tóth.
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