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n Fn
1 1
2 1
3 2
4 3
5 5
6 8
7 13
8 21
9 34

10 55
11 89
12 144

13 233
14 377
15 610
16 987
17 1597
18 2584
19 4181
20 6765
21 10946
22 17711
23 28657
24 46368
25 75025

n|Fn? 1, 5, 12, 24, 25, 36, 48, 60, 72, 96, 108, 120, ...

gcd(n,Fn) = 1? 1, 2, 3, 4, 7, 8, 9, 11, 13, 14, 16, 17, ...
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Let D := {n ∈ N : n|Fn}.

Theorem (Alba González–Luca–Pomerance–Shparlinski 2010)

As x →∞,

#D(x) ≤ x

exp
(
((1 + o(1))

√
log x log log x

) .
Theorem (Luca–T. 2014)

#D(x) ≤ x1−(1/2+o(1)) log log log x/log log x .

Conjecture (Pomerance 1981, Luca–T. 2014)

#D(x) = x1−(1+o(1)) log log log x/log log x .
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Set z(n) := min{m ∈ N : n|Fm}, S(k) := {n ∈ N : n/z(n) = k}.

Lemma

One has S(k) = ∅ if n has (almost) a square factor; otherwise if
k =

∏
i pi then (almost)

S(k) =

{
c(k)

∏
i

pβii : βi ∈ N

}

for some integer c(k).

Proof: if n ∈ S(k), look at which m have mn ∈ S(k) and inspect
p-adic valuations. One needs the following.

Lemma

c(k) = k lcm{zd(k) : d ∈ N}.
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Let C := {n ∈ N : gcd(n,Fn) = 1}, `(k) := lcm(k , z(k)).

Theorem (Sanna 2017)

The set C has a positive asymptotic density.

Theorem (Sanna–T. 2017)

Let Ck := {n ∈ N : gcd(n,Fn) = k}. Then such a set has an
asymptotic density for any k and the following are equivalent:

Ck is nonempty;

Ck has positive asymptotic density;

k = gcd(`(k),F`(k)). (More on this in the next talk...)

Moreover, the asymptotic density admits an explicit expression as
an absolutely convergent series:

d(Ck) =
∞∑
n=1

µ(n)

`(nk)
.
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Where does such an expression come from?

Set

%(n, d) = 1d |Fn
=

{
1, d |Fn,
0, d - Fn.

=⇒
∏
p|n

(1−%(n, p)) = 1gcd(n,Fn)=1

Since %(n, d) is multiplicative in d ,

#C (x) =
∑
n≤x

∑
d |n

µ(d)%(n, d)

=
∑
d≤x

µ(d)
∑

m≤x/d

µ(d)%(dm, d)

=
∑
d≤x

µ(d)

⌊
x

`(d)

⌋
= x

∑
d≤x

µ(d)

`(d)
− R(x).

Then one goes on to prove that

R(x) :=
∑
d≤x

µ(d)

{
x

`(d)

}
= o(x).
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Fn −→ un,

un non-degenerate linear recurrence over the integers. Let
Du := {n ∈ N : n|un}, Cu := {n ∈ N : gcd(n, un) = 1}.

Theorem (Alba González–Luca–Pomerance–Shparlinski 2010)

If u is simple then

#Du(x)� x

log x
.

Theorem (Alba González–Luca–Pomerance–Shparlinski 2010)

If u is a Lucas sequence, then

exp
(
C (log log x)2

)
≤ #Du(x) ≤ x

exp
(
((1 + o(1))

√
log x log log x

) .
If additionally the sequence has a2 = ±1 then #Du(x) ≥ x1/4+o(1).
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Theorem (Alba González–Luca–Pomerance–Shparlinski 2010)

If u is a Lucas sequence, then

exp
(
C (log log x)2

)
≤ #Du(x) ≤ x

exp
(
((1 + o(1))

√
log x log log x

) .
If additionally the sequence has a2 = ±1 then #Du(x) ≥ x1/4+o(1).

Emanuele Tron The g.c.d. of n and un 7/15



n, Fn
n, un
un , vn

Fn −→ un,

un non-degenerate linear recurrence over the integers. Let
Du := {n ∈ N : n|un}, Cu := {n ∈ N : gcd(n, un) = 1}.
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Theorem (Sanna 2015)

If u is a Lucas sequence, then

#Du(x) ≤ x1−(1/2+o(1)) log log log x/log log x .

Theorem (Sanna 2017)

The set Cu has an asymptotic density, which is positive unless
(un/n)n∈N is a linear recurrence.

Theorem (Sanna–T. 2017)

If u is a simple non-degenerate divisibility sequence, then results
formally analogous to the Fibonacci case hold. For instance,

1

x
#{n ≤ x : gcd(n, an − 1) = k} ∼

∑
d∈N

gcd(a,kd)=1

µ(d)

lcm(kd , orda(kd))
.
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n,Fn −→ un, vn,

un, vn non-degenerate linear recurrences over Z. We take them to
be simple (otherwise, methods of the previous case apply).
Let D := {n ∈ N : un|vn}.

The main tool is the following.

Subspace Theorem (Schmidt 1972, Schlickewei 1977)

K/Q number field, S a finite set of absolute values containing the
Archimedean ones. For each v ∈ S let Lν1 , . . . , L

ν
n be linearly

independent linear forms in n variables with coefficients in K ; let
ε > 0. Then the solutions of∏

ν∈S

n∏
i=1

|Lνi (x)|ν< H(x)−ε

with x ∈ On
S lie in the union of finitely many subspaces of Kn,

H(x) =
∏
ν max(1, |x |ν) being the absolute Weil height of x .

Emanuele Tron The g.c.d. of n and un 9/15



n, Fn
n, un
un , vn

n,Fn −→ un, vn,

un, vn non-degenerate linear recurrences over Z. We take them to
be simple (otherwise, methods of the previous case apply).
Let D := {n ∈ N : un|vn}. The main tool is the following.

Subspace Theorem (Schmidt 1972, Schlickewei 1977)

K/Q number field, S a finite set of absolute values containing the
Archimedean ones. For each v ∈ S let Lν1 , . . . , L

ν
n be linearly

independent linear forms in n variables with coefficients in K ; let
ε > 0. Then the solutions of∏

ν∈S

n∏
i=1

|Lνi (x)|ν< H(x)−ε

with x ∈ On
S lie in the union of finitely many subspaces of Kn,

H(x) =
∏
ν max(1, |x |ν) being the absolute Weil height of x .

Emanuele Tron The g.c.d. of n and un 9/15



n, Fn
n, un
un , vn

Hadamard Quotient Theorem (Pourchet 1979, van der Poorten
1988)

If D = N then vn/un is itself a linear recurrence.

Theorem (Corvaja–Zannier 1998)

If u, v are simple with positive integer roots, and if D is infinite,
then the same conclusion holds. The same holds if we assume the
dominant root condition.

Theorem (Corvaja–Zannier 2002)

If D is infinite, then there are a polynomial f and integers q, r
such that f (n)vqn+r/uqn+r and uqn+r/f (n) are linear recurrences.
(No dominant root condition!)
If the roots generate a torsion-free multiplicative group and vn/un
is not a linear recurrence, then #D(x) = o(x).

Emanuele Tron The g.c.d. of n and un 10/15



n, Fn
n, un
un , vn

Hadamard Quotient Theorem (Pourchet 1979, van der Poorten
1988)

If D = N then vn/un is itself a linear recurrence.

Theorem (Corvaja–Zannier 1998)

If u, v are simple with positive integer roots, and if D is infinite,
then the same conclusion holds. The same holds if we assume the
dominant root condition.

Theorem (Corvaja–Zannier 2002)

If D is infinite, then there are a polynomial f and integers q, r
such that f (n)vqn+r/uqn+r and uqn+r/f (n) are linear recurrences.
(No dominant root condition!)
If the roots generate a torsion-free multiplicative group and vn/un
is not a linear recurrence, then #D(x) = o(x).

Emanuele Tron The g.c.d. of n and un 10/15



n, Fn
n, un
un , vn

Hadamard Quotient Theorem (Pourchet 1979, van der Poorten
1988)

If D = N then vn/un is itself a linear recurrence.

Theorem (Corvaja–Zannier 1998)

If u, v are simple with positive integer roots, and if D is infinite,
then the same conclusion holds. The same holds if we assume the
dominant root condition.

Theorem (Corvaja–Zannier 2002)

If D is infinite, then there are a polynomial f and integers q, r
such that f (n)vqn+r/uqn+r and uqn+r/f (n) are linear recurrences.
(No dominant root condition!)
If the roots generate a torsion-free multiplicative group and vn/un
is not a linear recurrence, then #D(x) = o(x).

Emanuele Tron The g.c.d. of n and un 10/15



n, Fn
n, un
un , vn

Proof: Apply the Subspace Theorem to linear forms that look like

x sn
vn
un
− vn

s−1∑
i=0

(
s

i

)
us−1−i
n y in

(split un = xn − yn and expand x snvn/un = (un + yn)svn/un); in
other words, approximate vn/un by truncating to an appropriate
recurrence wn. If there is no dominant root, use a trick to
construct several more small linear forms out of this one.

Theorem (Sanna 2017)

If vn/un is not a linear recurrence then

#D(x)� x

(
log log x

log x

)c

for some positive integer c . Assuming the Hardy–Littlewood
h-tuples conjecture, this is optimal up to a power of log log x .
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Theorem (Bugeaud–Corvaja–Zannier 2003)

Let a and b be multiplicatively independent positive integers. For
any ε > 0 one has

gcd(an − 1, bn − 1) < exp(εn)

for all large n.
If b is not a power of a then

gcd(an − 1, bn − 1)� an/2.

Proof: Apply the Subspace Theorem to the linear forms

bin − 1

an − 1
−

t∑
i=1

1

ain
+

t∑
j=1

(
bi

aj

)n

obtained by truncating the expansion of 1/(an − 1).
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Proof: Apply the Subspace Theorem to the linear forms

bin − 1

an − 1
−

t∑
i=1

1

ain
+

t∑
j=1

(
bi

aj

)n

obtained by truncating the expansion of 1/(an − 1).
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Theorem (Fuchs 2003, Fuchs 2005)

un, vn with positive integer roots, one of which coprime to all the
others. Then for any ε > 0 one has

gcd(un, vn) < exp(εn)

for all large n (with effective constants).

Proof: Similar to Corvaja–Zannier, but even more technical–also
needs several linear forms coming from different places.
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Also some result in the mixed multiplicity case.

Theorem (Luca 2005)

f , p, g , q polynomials with integer coefficients, ε > 0, then

gcd(f (n)an + p(n), g(n)bn + q(n)) < exp(εn)

for all large n.

This kind of results comes from studying the gcd(u − 1, v − 1) for
u, v S-units or near S-units (Corvaja–Zannier 2005): this has
many more applications.

Emanuele Tron The g.c.d. of n and un 14/15



n, Fn
n, un
un , vn

Also some result in the mixed multiplicity case.

Theorem (Luca 2005)

f , p, g , q polynomials with integer coefficients, ε > 0, then

gcd(f (n)an + p(n), g(n)bn + q(n)) < exp(εn)

for all large n.

This kind of results comes from studying the gcd(u − 1, v − 1) for
u, v S-units or near S-units (Corvaja–Zannier 2005): this has
many more applications.

Emanuele Tron The g.c.d. of n and un 14/15



n, Fn
n, un
un , vn

To do: we know the distribution of the n’s for which
gcd(n,Fn) ≤ α fixed and of those for which gcd(n,Fn) = n.
It would be nice to extend our knowledge to gcd(n,Fn) ≥ βn,
0 < β < 1 fixed (presumably not too hard); even more interesting
to estimate (probably hard)

Gε(x) := #{n ≤ x : gcd(n,Fn) ≤ nε}.

Thanks for your attention!
emanuele.tron@u-bordeaux.fr
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