The g.c.d. of n and the n-th term of a linear recurrence \& related problems

Emanuele Tron
Université de Bordeaux

2nd Number Theory Meeting, Torino 26/10/2017

n	F_{n}	13	233
1	1	14	377
2	1	15	610
3	2	16	987
4	3	17	1597
5	5	18	2584
6	8	19	4181
7	13	20	6765
8	21	21	10946
9	34	22	17711
10	55	23	28657
11	89	24	46368
12	144	25	75025

$$
\begin{array}{r|cr|l}
n & F_{n} & 13 & 233 \\
\cline { 1 - 3 } 1 & 1 & 14 & 377 \\
2 & 1 & 15 & 610 \\
3 & 2 & 16 & 987 \\
4 & 3 & 17 & 1597 \\
5 & 5 & 18 & 2584 \\
6 & 8 & 19 & 4181 \\
7 & 13 & 20 & 6765 \\
8 & 21 & 21 & 10946 \\
9 & 34 & 22 & 17711 \\
10 & 55 & 23 & 28657 \\
11 & 89 & 24 & 46368 \\
12 & 144 & 25 & 75025 \\
n \mid F_{n} ? 1,5,12,24,25,36,48,60,72,96,108,120, \ldots
\end{array}
$$

n	F_{n}	13	233
1	1	14	377
2	1	15	610
3	2	16	987
4	3		17
5	1597		
$\mathbf{5}$	5	18	2584
7	8	19	4181
7	13	20	6765
8	21	21	10946
9	34	22	17711
10	55	23	28657
11	89	24	46368
12	144	25	75025

$n \mid F_{n}$? 1, 5, 12, 24, 25, 36, 48, 60, 72, 96, 108, 120, ...
$\operatorname{gcd}\left(n, F_{n}\right)=1$? 1, 2, 3, 4, 7, 8, 9, 11, 13, 14, 16, 17, ...

Let $D:=\left\{n \in \mathbb{N}: n \mid F_{n}\right\}$.

Let $D:=\left\{n \in \mathbb{N}: n \mid F_{n}\right\}$.
Theorem (Alba González-Luca-Pomerance-Shparlinski 2010)
As $x \rightarrow \infty$,

$$
\# D(x) \leq \frac{x}{\exp (((1+o(1)) \sqrt{\log x \log \log x})}
$$

Let $D:=\left\{n \in \mathbb{N}: n \mid F_{n}\right\}$.

Theorem (Alba González-Luca-Pomerance-Shparlinski 2010)
As $x \rightarrow \infty$,

$$
\# D(x) \leq \frac{x}{\exp (((1+o(1)) \sqrt{\log x \log \log x})}
$$

Theorem (Luca-T. 2014)

$$
\# D(x) \leq x^{1-(1 / 2+o(1)) \log \log \log x / \log \log x}
$$

Let $D:=\left\{n \in \mathbb{N}: n \mid F_{n}\right\}$.

Theorem (Alba González-Luca-Pomerance-Shparlinski 2010)

As $x \rightarrow \infty$,

$$
\# D(x) \leq \frac{x}{\exp (((1+o(1)) \sqrt{\log x \log \log x})}
$$

Theorem (Luca-T. 2014)

$$
\# D(x) \leq x^{1-(1 / 2+o(1)) \log \log \log x / \log \log x}
$$

Conjecture (Pomerance 1981, Luca-T. 2014)

$$
\# D(x)=x^{1-(1+o(1)) \log \log \log x / \log \log x}
$$

Set $z(n):=\min \left\{m \in \mathbb{N}: n \mid F_{m}\right\}, \mathcal{S}(k):=\{n \in \mathbb{N}: n / z(n)=k\}$.

Set $z(n):=\min \left\{m \in \mathbb{N}: n \mid F_{m}\right\}, \mathcal{S}(k):=\{n \in \mathbb{N}: n / z(n)=k\}$.

Lemma

One has $\mathcal{S}(k)=\varnothing$ if n has (almost) a square factor; otherwise if $k=\prod_{i} p_{i}$ then (almost)

$$
\mathcal{S}(k)=\left\{c(k) \prod_{i} p_{i}^{\beta_{i}}: \beta_{i} \in \mathbb{N}\right\}
$$

for some integer $c(k)$.

Set $z(n):=\min \left\{m \in \mathbb{N}: n \mid F_{m}\right\}, \mathcal{S}(k):=\{n \in \mathbb{N}: n / z(n)=k\}$.

Lemma

One has $\mathcal{S}(k)=\varnothing$ if n has (almost) a square factor; otherwise if $k=\prod_{i} p_{i}$ then (almost)

$$
\mathcal{S}(k)=\left\{c(k) \prod_{i} p_{i}^{\beta_{i}}: \beta_{i} \in \mathbb{N}\right\}
$$

for some integer $c(k)$.
Proof: if $n \in \mathcal{S}(k)$, look at which m have $m n \in \mathcal{S}(k)$ and inspect p-adic valuations. One needs the following.

Set $z(n):=\min \left\{m \in \mathbb{N}: n \mid F_{m}\right\}, \mathcal{S}(k):=\{n \in \mathbb{N}: n / z(n)=k\}$.

Lemma

One has $\mathcal{S}(k)=\varnothing$ if n has (almost) a square factor; otherwise if $k=\prod_{i} p_{i}$ then (almost)

$$
\mathcal{S}(k)=\left\{c(k) \prod_{i} p_{i}^{\beta_{i}}: \beta_{i} \in \mathbb{N}\right\}
$$

for some integer $c(k)$.
Proof: if $n \in \mathcal{S}(k)$, look at which m have $m n \in \mathcal{S}(k)$ and inspect p-adic valuations. One needs the following.

Lemma

$$
c(k)=k \operatorname{lcm}\left\{z^{d}(k): d \in \mathbb{N}\right\} .
$$

$$
\begin{gathered}
n, F_{n} \\
n, u_{n} \\
u_{n}, \\
v_{n}
\end{gathered}
$$

Let $C:=\left\{n \in \mathbb{N}: \operatorname{gcd}\left(n, F_{n}\right)=1\right\}, \ell(k):=\operatorname{lcm}(k, z(k))$.

Let $C:=\left\{n \in \mathbb{N}: \operatorname{gcd}\left(n, F_{n}\right)=1\right\}, \ell(k):=\operatorname{lcm}(k, z(k))$.

Theorem (Sanna 2017)

The set C has a positive asymptotic density.

$$
\text { Let } C:=\left\{n \in \mathbb{N}: \operatorname{gcd}\left(n, F_{n}\right)=1\right\}, \ell(k):=\operatorname{lcm}(k, z(k))
$$

Theorem (Sanna 2017)

The set C has a positive asymptotic density.

Theorem (Sanna-T. 2017)

Let $C_{k}:=\left\{n \in \mathbb{N}: \operatorname{gcd}\left(n, F_{n}\right)=k\right\}$. Then such a set has an asymptotic density for any k and the following are equivalent:

- C_{k} is nonempty;
- C_{k} has positive asymptotic density;
- $k=\operatorname{gcd}\left(\ell(k), F_{\ell(k)}\right)$. (More on this in the next talk...)

$$
\text { Let } C:=\left\{n \in \mathbb{N}: \operatorname{gcd}\left(n, F_{n}\right)=1\right\}, \ell(k):=\operatorname{lcm}(k, z(k))
$$

Theorem (Sanna 2017)

The set C has a positive asymptotic density.

Theorem (Sanna-T. 2017)

Let $C_{k}:=\left\{n \in \mathbb{N}: \operatorname{gcd}\left(n, F_{n}\right)=k\right\}$. Then such a set has an asymptotic density for any k and the following are equivalent:

- C_{k} is nonempty;
- C_{k} has positive asymptotic density;
- $k=\operatorname{gcd}\left(\ell(k), F_{\ell(k)}\right)$. (More on this in the next talk...)

Moreover, the asymptotic density admits an explicit expression as an absolutely convergent series:

$$
d\left(C_{k}\right)=\sum_{n=1}^{\infty} \frac{\mu(n)}{\ell(n k)}
$$

Where does such an expression come from?

Where does such an expression come from? Set

$$
\varrho(n, d)=\mathbb{1}_{d \mid F_{n}}=\left\{\begin{array}{ll}
1, & d \mid F_{n}, \\
0, & d \nmid F_{n} .
\end{array} \quad \Longrightarrow \prod_{p \mid n}(1-\varrho(n, p))=\mathbb{1}_{\operatorname{gcd}\left(n, F_{n}\right)=1}\right.
$$

Where does such an expression come from? Set
$\varrho(n, d)=\mathbb{1}_{d \mid F_{n}}=\left\{\begin{array}{ll}1, & d \mid F_{n}, \\ 0, & d \nmid F_{n} .\end{array} \Longrightarrow \prod_{p \mid n}(1-\varrho(n, p))=\mathbb{1}_{\operatorname{gcd}\left(n, F_{n}\right)=1}\right.$
Since $\varrho(n, d)$ is multiplicative in d,

$$
\begin{aligned}
\# C(x) & =\sum_{n \leq x} \sum_{d \mid n} \mu(d) \varrho(n, d) \\
& =\sum_{d \leq x} \mu(d) \sum_{m \leq x / d} \mu(d) \varrho(d m, d) \\
& =\sum_{d \leq x} \mu(d)\left\lfloor\frac{x}{\ell(d)}\right\rfloor=x \sum_{d \leq x} \frac{\mu(d)}{\ell(d)}-R(x)
\end{aligned}
$$

Where does such an expression come from? Set
$\varrho(n, d)=\mathbb{1}_{d \mid F_{n}}=\left\{\begin{array}{ll}1, & d \mid F_{n}, \\ 0, & d \nmid F_{n} .\end{array} \quad \Longrightarrow \prod_{p \mid n}(1-\varrho(n, p))=\mathbb{1}_{\operatorname{gcd}\left(n, F_{n}\right)=1}\right.$
Since $\varrho(n, d)$ is multiplicative in d,

$$
\begin{aligned}
\# C(x) & =\sum_{n \leq x} \sum_{d \mid n} \mu(d) \varrho(n, d) \\
& =\sum_{d \leq x} \mu(d) \sum_{m \leq x / d} \mu(d) \varrho(d m, d) \\
& =\sum_{d \leq x} \mu(d)\left\lfloor\frac{x}{\ell(d)}\right\rfloor=x \sum_{d \leq x} \frac{\mu(d)}{\ell(d)}-R(x)
\end{aligned}
$$

Then one goes on to prove that

$$
R(x):=\sum_{d \leq x} \mu(d)\left\{\frac{x}{\ell(d)}\right\}=o(x)
$$

$$
F_{n} \quad \longrightarrow \quad u_{n},
$$

u_{n} non-degenerate linear recurrence over the integers. Let $D_{u}:=\left\{n \in \mathbb{N}: n \mid u_{n}\right\}, C_{u}:=\left\{n \in \mathbb{N}: \operatorname{gcd}\left(n, u_{n}\right)=1\right\}$.
$F_{n} \longrightarrow u_{n}$,
u_{n} non-degenerate linear recurrence over the integers. Let $D_{u}:=\left\{n \in \mathbb{N}: n \mid u_{n}\right\}, C_{u}:=\left\{n \in \mathbb{N}: \operatorname{gcd}\left(n, u_{n}\right)=1\right\}$.

Theorem (Alba González-Luca-Pomerance-Shparlinski 2010)
If u is simple then

$$
\# D_{u}(x) \ll \frac{x}{\log x}
$$

$$
F_{n} \quad \longrightarrow \quad u_{n}
$$

u_{n} non-degenerate linear recurrence over the integers. Let
$D_{u}:=\left\{n \in \mathbb{N}: n \mid u_{n}\right\}, C_{u}:=\left\{n \in \mathbb{N}: \operatorname{gcd}\left(n, u_{n}\right)=1\right\}$.

Theorem (Alba González-Luca-Pomerance-Shparlinski 2010)

If u is simple then

$$
\# D_{u}(x) \ll \frac{x}{\log x}
$$

Theorem (Alba González-Luca-Pomerance-Shparlinski 2010)

If u is a Lucas sequence, then
$\exp \left(C(\log \log x)^{2}\right) \leq \# D_{u}(x) \leq \frac{x}{\exp (((1+o(1)) \sqrt{\log x \log \log x})}$.
If additionally the sequence has $a_{2}= \pm 1$ then $\# D_{u}(x) \geq x^{1 / 4+o(1)}$.

$$
\begin{gathered}
n, F_{n} \\
n, u_{n} \\
u_{n}, \\
v_{n}
\end{gathered}
$$

Theorem (Sanna 2015)

If u is a Lucas sequence, then $\# D_{u}(x) \leq x^{1-(1 / 2+o(1)) \log \log \log x / \log \log x}$.

Theorem (Sanna 2015)

If u is a Lucas sequence, then

$$
\# D_{u}(x) \leq x^{1-(1 / 2+o(1)) \log \log \log x / \log \log x}
$$

Theorem (Sanna 2017)

The set C_{u} has an asymptotic density, which is positive unless $\left(u_{n} / n\right)_{n \in \mathbb{N}}$ is a linear recurrence.

Theorem (Sanna 2015)

If u is a Lucas sequence, then

$$
\# D_{u}(x) \leq x^{1-(1 / 2+o(1)) \log \log \log x / \log \log x}
$$

Theorem (Sanna 2017)

The set C_{u} has an asymptotic density, which is positive unless $\left(u_{n} / n\right)_{n \in \mathbb{N}}$ is a linear recurrence.

Theorem (Sanna-T. 2017)

If u is a simple non-degenerate divisibility sequence, then results formally analogous to the Fibonacci case hold. For instance,

$$
\frac{1}{x} \#\left\{n \leq x: \operatorname{gcd}\left(n, a^{n}-1\right)=k\right\} \sim \sum_{\substack{d \in \mathbb{N} \\ \operatorname{gcd}(a, k d)=1}} \frac{\mu(d)}{\operatorname{lcm}\left(k d, \operatorname{ord}_{a}(k d)\right)}
$$

$$
n, F_{n} \quad \longrightarrow \quad u_{n}, v_{n}
$$

u_{n}, v_{n} non-degenerate linear recurrences over \mathbb{Z}. We take them to be simple (otherwise, methods of the previous case apply).
Let $D:=\left\{n \in \mathbb{N}: u_{n} \mid v_{n}\right\}$.

$$
n, F_{n} \quad \longrightarrow \quad u_{n}, v_{n}
$$

u_{n}, v_{n} non-degenerate linear recurrences over \mathbb{Z}. We take them to be simple (otherwise, methods of the previous case apply).
Let $D:=\left\{n \in \mathbb{N}: u_{n} \mid v_{n}\right\}$. The main tool is the following.

Subspace Theorem (Schmidt 1972, Schlickewei 1977)

K / \mathbb{Q} number field, S a finite set of absolute values containing the Archimedean ones. For each $v \in S$ let $L_{1}^{\nu}, \ldots, L_{n}^{\nu}$ be linearly independent linear forms in n variables with coefficients in K; let $\varepsilon>0$. Then the solutions of

$$
\prod_{\nu \in S} \prod_{i=1}^{n}\left|L_{i}^{\nu}(\mathbf{x})\right|_{\nu}<H(\mathbf{x})^{-\varepsilon}
$$

with $\mathbf{x} \in \mathcal{O}_{S}^{n}$ lie in the union of finitely many subspaces of K^{n}, $H(x)=\prod_{\nu} \max \left(1,|x|_{\nu}\right)$ being the absolute Weil height of x.

$$
\begin{array}{r}
n, F_{n} \\
n, u_{n} \\
u_{n}, v_{n}
\end{array}
$$

Hadamard Quotient Theorem (Pourchet 1979, van der Poorten 1988)
 If $D=\mathbb{N}$ then v_{n} / u_{n} is itself a linear recurrence.

Hadamard Quotient Theorem (Pourchet 1979, van der Poorten 1988)

If $D=\mathbb{N}$ then v_{n} / u_{n} is itself a linear recurrence.

Theorem (Corvaja-Zannier 1998)

If u, v are simple with positive integer roots, and if D is infinite, then the same conclusion holds. The same holds if we assume the dominant root condition.

Hadamard Quotient Theorem (Pourchet 1979, van der Poorten 1988)

If $D=\mathbb{N}$ then v_{n} / u_{n} is itself a linear recurrence.

Theorem (Corvaja-Zannier 1998)

If u, v are simple with positive integer roots, and if D is infinite, then the same conclusion holds. The same holds if we assume the dominant root condition.

Theorem (Corvaja-Zannier 2002)

If D is infinite, then there are a polynomial f and integers q, r such that $f(n) v_{q n+r} / u_{q n+r}$ and $u_{q n+r} / f(n)$ are linear recurrences.
(No dominant root condition!)
If the roots generate a torsion-free multiplicative group and v_{n} / u_{n} is not a linear recurrence, then $\# D(x)=o(x)$.

Proof: Apply the Subspace Theorem to linear forms that look like

$$
x_{n}^{s} \frac{v_{n}}{u_{n}}-v_{n} \sum_{i=0}^{s-1}\binom{s}{i} u_{n}^{s-1-i} y_{n}^{i}
$$

(split $u_{n}=x_{n}-y_{n}$ and expand $x_{n}^{s} v_{n} / u_{n}=\left(u_{n}+y_{n}\right)^{s} v_{n} / u_{n}$); in other words, approximate v_{n} / u_{n} by truncating to an appropriate recurrence w_{n}. If there is no dominant root, use a trick to construct several more small linear forms out of this one.

Proof: Apply the Subspace Theorem to linear forms that look like

$$
x_{n}^{s} \frac{v_{n}}{u_{n}}-v_{n} \sum_{i=0}^{s-1}\binom{s}{i} u_{n}^{s-1-i} y_{n}^{i}
$$

(split $u_{n}=x_{n}-y_{n}$ and expand $x_{n}^{s} v_{n} / u_{n}=\left(u_{n}+y_{n}\right)^{s} v_{n} / u_{n}$); in other words, approximate v_{n} / u_{n} by truncating to an appropriate recurrence w_{n}. If there is no dominant root, use a trick to construct several more small linear forms out of this one.

Theorem (Sanna 2017)

If v_{n} / u_{n} is not a linear recurrence then

$$
\# D(x) \ll x\left(\frac{\log \log x}{\log x}\right)^{c}
$$

for some positive integer c. Assuming the Hardy-Littlewood h-tuples conjecture, this is optimal up to a power of $\log \log x$.

Theorem (Bugeaud-Corvaja-Zannier 2003)
Let a and b be multiplicatively independent positive integers. For any $\varepsilon>0$ one has

$$
\operatorname{gcd}\left(a^{n}-1, b^{n}-1\right)<\exp (\varepsilon n)
$$

for all large n.
If b is not a power of a then

$$
\operatorname{gcd}\left(a^{n}-1, b^{n}-1\right) \ll a^{n / 2} .
$$

Theorem (Bugeaud-Corvaja-Zannier 2003)

Let a and b be multiplicatively independent positive integers. For any $\varepsilon>0$ one has

$$
\operatorname{gcd}\left(a^{n}-1, b^{n}-1\right)<\exp (\varepsilon n)
$$

for all large n.
If b is not a power of a then

$$
\operatorname{gcd}\left(a^{n}-1, b^{n}-1\right) \ll a^{n / 2} .
$$

Proof: Apply the Subspace Theorem to the linear forms

$$
\frac{b^{i n}-1}{a^{n}-1}-\sum_{i=1}^{t} \frac{1}{a^{i n}}+\sum_{j=1}^{t}\left(\frac{b^{i}}{a^{j}}\right)^{n}
$$

obtained by truncating the expansion of $1 /\left(a^{n}-1\right)$.

Theorem (Fuchs 2003, Fuchs 2005)
u_{n}, v_{n} with positive integer roots, one of which coprime to all the others. Then for any $\varepsilon>0$ one has

$$
\operatorname{gcd}\left(u_{n}, v_{n}\right)<\exp (\varepsilon n)
$$

for all large n (with effective constants).

Theorem (Fuchs 2003, Fuchs 2005)

u_{n}, v_{n} with positive integer roots, one of which coprime to all the others. Then for any $\varepsilon>0$ one has

$$
\operatorname{gcd}\left(u_{n}, v_{n}\right)<\exp (\varepsilon n)
$$

for all large n (with effective constants).
Proof: Similar to Corvaja-Zannier, but even more technical-also needs several linear forms coming from different places.

Also some result in the mixed multiplicity case.

Theorem (Luca 2005)

f, p, g, q polynomials with integer coefficients, $\varepsilon>0$, then

$$
\operatorname{gcd}\left(f(n) a^{n}+p(n), g(n) b^{n}+q(n)\right)<\exp (\varepsilon n)
$$

for all large n.

Also some result in the mixed multiplicity case.

Theorem (Luca 2005)

f, p, g, q polynomials with integer coefficients, $\varepsilon>0$, then

$$
\operatorname{gcd}\left(f(n) a^{n}+p(n), g(n) b^{n}+q(n)\right)<\exp (\varepsilon n)
$$

for all large n.
This kind of results comes from studying the $\operatorname{gcd}(u-1, v-1)$ for $u, v S$-units or near S-units (Corvaja-Zannier 2005): this has many more applications.

To do: we know the distribution of the n 's for which $\operatorname{gcd}\left(n, F_{n}\right) \leq \alpha$ fixed and of those for which $\operatorname{gcd}\left(n, F_{n}\right)=n$. It would be nice to extend our knowledge to $\operatorname{gcd}\left(n, F_{n}\right) \geq \beta n$, $0<\beta<1$ fixed (presumably not too hard); even more interesting to estimate (probably hard)

$$
G_{\varepsilon}(x):=\#\left\{n \leq x: \operatorname{gcd}\left(n, F_{n}\right) \leq n^{\varepsilon}\right\} .
$$

To do: we know the distribution of the n 's for which $\operatorname{gcd}\left(n, F_{n}\right) \leq \alpha$ fixed and of those for which $\operatorname{gcd}\left(n, F_{n}\right)=n$. It would be nice to extend our knowledge to $\operatorname{gcd}\left(n, F_{n}\right) \geq \beta n$, $0<\beta<1$ fixed (presumably not too hard); even more interesting to estimate (probably hard)

$$
G_{\varepsilon}(x):=\#\left\{n \leq x: \operatorname{gcd}\left(n, F_{n}\right) \leq n^{\varepsilon}\right\} .
$$

Thanks for your attention!
 emanuele.tron@u-bordeaux.fr

