The g.c.d. of *n* and the *n*-th term of a linear recurrence & related problems

Emanuele Tron

Université de Bordeaux

2nd Number Theory Meeting, Torino 26/10/2017

n, F_n

n, Vn

п	F_n	13	233
1	1	14	377
2	1	15	610
3	2	16	987
4	3	17	1597
5	5	18	2584
6	8	19	4181
7	13	20	6765
8	21	21	10946
9	34	22	17711
10	55	23	28657
11	89	24	46368
12	144	25	75025

n, F_n

n. Vn

п	$ F_n$	13	233
1	1	14	377
2	1	15	610
3	2	16	987
4	3	17	1597
5	5	18	2584
6	8	19	4181
7	13	20	6765
8	21	21	10946
9	34	22	17711
10	55	23	28657
11	89	24	46368
12	144	25	75025

n |*F_n*? 1, 5, 12, 24, 25, 36, 48, 60, 72, 96, 108, 120, ...

un, vn

п	F _n	13	233
1	1	14	377
2	1	15	610
3	2	16	987
4	3	17	1597
5	5	18	2584
6	8	19	4181
7	13	20	6765
8	21	21	10946
9	34	22	17711
10	55	23	28657
11	89	24	46368
12	144	25	75025

 $n|F_n$? 1, 5, 12, 24, 25, 36, 48, 60, 72, 96, 108, 120, ...

 $gcd(n, F_n) = 1$? 1, 2, 3, 4, 7, 8, 9, 11, 13, 14, 16, 17, ...

Let $D := \{n \in \mathbb{N} : n | F_n\}.$

Let $D := \{n \in \mathbb{N} : n | F_n\}.$

Theorem (Alba González–Luca–Pomerance–Shparlinski 2010)

As $x \to \infty$,

$$\#D(x) \leq \frac{x}{\exp\left(((1+o(1))\sqrt{\log x \log \log x}\right)}$$

Let $D := \{n \in \mathbb{N} : n | F_n\}.$

Theorem (Alba González–Luca–Pomerance–Shparlinski 2010)

As $x \to \infty$,

$$\#D(x) \leq \frac{x}{\exp\left(((1+o(1))\sqrt{\log x \log \log x}\right)}$$

Theorem (Luca–T. 2014)

$$\#D(x) \le x^{1-(1/2+o(1))\log\log\log x/\log\log x}$$

Let $D := \{n \in \mathbb{N} : n | F_n\}.$

Theorem (Alba González–Luca–Pomerance–Shparlinski 2010)

As $x \to \infty$,

$$\#D(x) \leq \frac{x}{\exp\left(((1+o(1))\sqrt{\log x \log \log x}\right)}$$

Theorem (Luca–T. 2014)

$$\#D(x) \le x^{1-(1/2+o(1))\log\log\log x/\log\log x}$$

Conjecture (Pomerance 1981, Luca-T. 2014)

$$\#D(x) = x^{1-(1+o(1))\log\log\log x/\log\log x}$$

Set $z(n) := \min\{m \in \mathbb{N} : n | F_m\}$, $\mathcal{S}(k) := \{n \in \mathbb{N} : n/z(n) = k\}$.

Set $z(n) := \min\{m \in \mathbb{N} : n | F_m\}$, $\mathcal{S}(k) := \{n \in \mathbb{N} : n/z(n) = k\}$.

Lemma

One has $S(k) = \emptyset$ if *n* has (almost) a square factor; otherwise if $k = \prod_i p_i$ then (almost)

$$\mathcal{S}(k) = \left\{ c(k) \prod_{i} p_{i}^{\beta_{i}} : \beta_{i} \in \mathbb{N} \right\}$$

for some integer c(k).

Set $z(n) := \min\{m \in \mathbb{N} : n | F_m\}$, $\mathcal{S}(k) := \{n \in \mathbb{N} : n/z(n) = k\}$.

Lemma

One has $S(k) = \emptyset$ if *n* has (almost) a square factor; otherwise if $k = \prod_i p_i$ then (almost)

$$\mathcal{S}(k) = \left\{ c(k) \prod_{i} p_{i}^{\beta_{i}} : \beta_{i} \in \mathbb{N} \right\}$$

for some integer c(k).

Proof: if $n \in S(k)$, look at which *m* have $mn \in S(k)$ and inspect *p*-adic valuations. One needs the following.

Set $z(n) := \min\{m \in \mathbb{N} : n | F_m\}$, $\mathcal{S}(k) := \{n \in \mathbb{N} : n/z(n) = k\}$.

Lemma

One has $S(k) = \emptyset$ if *n* has (almost) a square factor; otherwise if $k = \prod_i p_i$ then (almost)

$$\mathcal{S}(k) = \left\{ c(k) \prod_{i} p_{i}^{\beta_{i}} : \beta_{i} \in \mathbb{N} \right\}$$

for some integer c(k).

Proof: if $n \in S(k)$, look at which *m* have $mn \in S(k)$ and inspect *p*-adic valuations. One needs the following.

Lemma

$$c(k) = k \operatorname{lcm} \{ z^{d}(k) : d \in \mathbb{N} \}.$$

Let $C := \{n \in \mathbb{N} : \gcd(n, F_n) = 1\}, \ \ell(k) := \operatorname{lcm}(k, z(k)).$

Let $C := \{n \in \mathbb{N} : \gcd(n, F_n) = 1\}, \ \ell(k) := \operatorname{lcm}(k, z(k)).$

Theorem (Sanna 2017)

The set C has a positive asymptotic density.

Let $C := \{n \in \mathbb{N} : \gcd(n, F_n) = 1\}, \ \ell(k) := \operatorname{lcm}(k, z(k)).$

Theorem (Sanna 2017)

The set C has a positive asymptotic density.

Theorem (Sanna–T. 2017)

Let $C_k := \{n \in \mathbb{N} : \gcd(n, F_n) = k\}$. Then such a set has an asymptotic density for any k and the following are equivalent:

- C_k is nonempty;
- C_k has positive asymptotic density;
- $k = \gcd(\ell(k), F_{\ell(k)})$. (More on this in the next talk...)

Let $C := \{n \in \mathbb{N} : \gcd(n, F_n) = 1\}, \ \ell(k) := \operatorname{lcm}(k, z(k)).$

Theorem (Sanna 2017)

The set C has a positive asymptotic density.

Theorem (Sanna–T. 2017)

Let $C_k := \{n \in \mathbb{N} : \gcd(n, F_n) = k\}$. Then such a set has an asymptotic density for any k and the following are equivalent:

- C_k is nonempty;
- C_k has positive asymptotic density;
- $k = \gcd(\ell(k), F_{\ell(k)})$. (More on this in the next talk...)

Moreover, the asymptotic density admits an explicit expression as an absolutely convergent series:

$$d(C_k) = \sum_{n=1}^{\infty} \frac{\mu(n)}{\ell(nk)}.$$

Where does such an expression come from?

Where does such an expression come from? Set

$$\varrho(n,d) = \mathbb{1}_{d|F_n} = \begin{cases} 1, \ d|F_n, \\ 0, \ d \nmid F_n. \end{cases} \implies \prod_{p|n} (1-\varrho(n,p)) = \mathbb{1}_{\gcd(n,F_n)=1}$$

Where does such an expression come from? Set

$$\varrho(n,d) = \mathbb{1}_{d|F_n} = \begin{cases} 1, \ d|F_n, \\ 0, \ d \nmid F_n. \end{cases} \implies \prod_{p|n} (1-\varrho(n,p)) = \mathbb{1}_{\gcd(n,F_n)=1}$$

Since $\rho(n, d)$ is multiplicative in d,

$$\#C(x) = \sum_{n \le x} \sum_{d|n} \mu(d)\varrho(n, d)$$

= $\sum_{d \le x} \mu(d) \sum_{m \le x/d} \mu(d)\varrho(dm, d)$
= $\sum_{d \le x} \mu(d) \left\lfloor \frac{x}{\ell(d)} \right\rfloor = x \sum_{d \le x} \frac{\mu(d)}{\ell(d)} - R(x).$

Where does such an expression come from? Set

$$\varrho(n,d) = \mathbb{1}_{d|F_n} = \begin{cases} 1, \ d|F_n, \\ 0, \ d \nmid F_n. \end{cases} \implies \prod_{p|n} (1-\varrho(n,p)) = \mathbb{1}_{\gcd(n,F_n)=1}$$

Since $\rho(n, d)$ is multiplicative in d,

$$\#C(x) = \sum_{n \le x} \sum_{d|n} \mu(d)\varrho(n, d)$$

= $\sum_{d \le x} \mu(d) \sum_{m \le x/d} \mu(d)\varrho(dm, d)$
= $\sum_{d \le x} \mu(d) \left\lfloor \frac{x}{\ell(d)} \right\rfloor = x \sum_{d \le x} \frac{\mu(d)}{\ell(d)} - R(x).$

Then one goes on to prove that

$$R(x) := \sum_{d \le x} \mu(d) \left\{ \frac{x}{\ell(d)} \right\} = o(x).$$

n, F_n **n, u**n

$$F_n \longrightarrow u_n$$

 u_n non-degenerate linear recurrence over the integers. Let $D_u := \{n \in \mathbb{N} : n | u_n\}, C_u := \{n \in \mathbb{N} : gcd(n, u_n) = 1\}.$

n, F_n **n, u_n** u_n, Vn

$$F_n \longrightarrow u_n,$$

 u_n non-degenerate linear recurrence over the integers. Let $D_u := \{n \in \mathbb{N} : n | u_n\}, C_u := \{n \in \mathbb{N} : gcd(n, u_n) = 1\}.$

Theorem (Alba González–Luca–Pomerance–Shparlinski 2010)

If *u* is simple then

$$\#D_u(x)\ll \frac{x}{\log x}.$$

n, F_n **n, u**n

$$F_n \longrightarrow u_n,$$

 u_n non-degenerate linear recurrence over the integers. Let $D_u := \{n \in \mathbb{N} : n | u_n\}, C_u := \{n \in \mathbb{N} : gcd(n, u_n) = 1\}.$

Theorem (Alba González–Luca–Pomerance–Shparlinski 2010)

If *u* is simple then

$$\#D_u(x)\ll \frac{x}{\log x}.$$

Theorem (Alba González–Luca–Pomerance–Shparlinski 2010)

If u is a Lucas sequence, then

$$\exp\left(C(\log\log x)^2\right) \le \#D_u(x) \le \frac{x}{\exp\left(((1+o(1))\sqrt{\log x \log\log x}\right)}$$

If additionally the sequence has $a_2 = \pm 1$ then $\#D_u(x) \ge x^{1/4+o(1)}$.

Theorem (Sanna 2015)

If u is a Lucas sequence, then

$$\# D_u(x) \le x^{1-(1/2+o(1))\log\log\log x/\log\log x}$$

Theorem (Sanna 2015)

If u is a Lucas sequence, then

$$\# D_u(x) \le x^{1-(1/2+o(1))\log\log\log x/\log\log x}$$

Theorem (Sanna 2017)

The set C_u has an asymptotic density, which is positive unless $(u_n/n)_{n \in \mathbb{N}}$ is a linear recurrence.

Theorem (Sanna 2015)

If u is a Lucas sequence, then

$$\# D_u(x) \le x^{1-(1/2+o(1))\log\log\log x/\log\log x}$$

Theorem (Sanna 2017)

The set C_u has an asymptotic density, which is positive unless $(u_n/n)_{n \in \mathbb{N}}$ is a linear recurrence.

Theorem (Sanna–T. 2017)

If u is a simple non-degenerate divisibility sequence, then results formally analogous to the Fibonacci case hold. For instance,

$$\frac{1}{x}\#\{n\leq x:\gcd(n,a^n-1)=k\}\sim \sum_{d\in\mathbb{N}\atop \gcd(a,kd)=1}\frac{\mu(d)}{\operatorname{lcm}(kd,\operatorname{ord}_a(kd))}.$$

$$n, F_n \longrightarrow u_n, v_n,$$

 u_n , v_n non-degenerate linear recurrences over \mathbb{Z} . We take them to be simple (otherwise, methods of the previous case apply). Let $D := \{n \in \mathbb{N} : u_n | v_n\}$.

$$n, F_n \longrightarrow u_n, v_n,$$

 u_n , v_n non-degenerate linear recurrences over \mathbb{Z} . We take them to be simple (otherwise, methods of the previous case apply). Let $D := \{n \in \mathbb{N} : u_n | v_n\}$. The main tool is the following.

Subspace Theorem (Schmidt 1972, Schlickewei 1977)

 K/\mathbb{Q} number field, S a finite set of absolute values containing the Archimedean ones. For each $v \in S$ let $L_1^{\nu}, \ldots, L_n^{\nu}$ be linearly independent linear forms in n variables with coefficients in K; let $\varepsilon > 0$. Then the solutions of

$$\prod_{\nu \in S} \prod_{i=1}^{n} |L_{i}^{\nu}(\mathbf{x})|_{\nu} < H(\mathbf{x})^{-\varepsilon}$$

with $\mathbf{x} \in \mathcal{O}_{S}^{n}$ lie in the union of finitely many subspaces of K^{n} , $H(x) = \prod_{\nu} \max(1, |x|_{\nu})$ being the absolute Weil height of x.

Hadamard Quotient Theorem (Pourchet 1979, van der Poorten 1988)

If $D = \mathbb{N}$ then v_n/u_n is itself a linear recurrence.

Hadamard Quotient Theorem (Pourchet 1979, van der Poorten 1988)

If $D = \mathbb{N}$ then v_n/u_n is itself a linear recurrence.

Theorem (Corvaja–Zannier 1998)

If u, v are simple with positive integer roots, and if D is infinite, then the same conclusion holds. The same holds if we assume the *dominant root condition*.

Hadamard Quotient Theorem (Pourchet 1979, van der Poorten 1988)

If $D = \mathbb{N}$ then v_n/u_n is itself a linear recurrence.

Theorem (Corvaja–Zannier 1998)

If u, v are simple with positive integer roots, and if D is infinite, then the same conclusion holds. The same holds if we assume the *dominant root condition*.

Theorem (Corvaja–Zannier 2002)

If D is infinite, then there are a polynomial f and integers q, r such that $f(n)v_{qn+r}/u_{qn+r}$ and $u_{qn+r}/f(n)$ are linear recurrences. (No dominant root condition!) If the roots generate a torsion-free multiplicative group and v_n/u_n is not a linear recurrence, then #D(x) = o(x).

Proof: Apply the Subspace Theorem to linear forms that look like

$$x_n^s \frac{v_n}{u_n} - v_n \sum_{i=0}^{s-1} \binom{s}{i} u_n^{s-1-i} y_n^i$$

(split $u_n = x_n - y_n$ and expand $x_n^s v_n / u_n = (u_n + y_n)^s v_n / u_n$); in other words, approximate v_n / u_n by truncating to an appropriate recurrence w_n . If there is no dominant root, use a trick to construct several more small linear forms out of this one.

Proof: Apply the Subspace Theorem to linear forms that look like

$$x_n^s \frac{v_n}{u_n} - v_n \sum_{i=0}^{s-1} \binom{s}{i} u_n^{s-1-i} y_n^i$$

(split $u_n = x_n - y_n$ and expand $x_n^s v_n / u_n = (u_n + y_n)^s v_n / u_n$); in other words, approximate v_n / u_n by truncating to an appropriate recurrence w_n . If there is no dominant root, use a trick to construct several more small linear forms out of this one.

Theorem (Sanna 2017)

If v_n/u_n is not a linear recurrence then

$$\#D(x) \ll x \left(\frac{\log\log x}{\log x}\right)^c$$

for some positive integer c. Assuming the Hardy–Littlewood h-tuples conjecture, this is optimal up to a power of log log x.

Theorem (Bugeaud–Corvaja–Zannier 2003)

Let a and b be multiplicatively independent positive integers. For any $\varepsilon>0$ one has

$$gcd(a^n-1,b^n-1) < exp(\varepsilon n)$$

for all large n. If b is not a power of a then

$$gcd(a^n-1,b^n-1) \ll a^{n/2}.$$

Theorem (Bugeaud–Corvaja–Zannier 2003)

Let a and b be multiplicatively independent positive integers. For any $\varepsilon>0$ one has

$$gcd(a^n-1, b^n-1) < exp(\varepsilon n)$$

for all large n. If b is not a power of a then

$$gcd(a^n-1,b^n-1) \ll a^{n/2}.$$

Proof: Apply the Subspace Theorem to the linear forms

$$\frac{b^{in}-1}{a^n-1}-\sum_{i=1}^t\frac{1}{a^{in}}+\sum_{j=1}^t\left(\frac{b^j}{a^j}\right)^n$$

obtained by truncating the expansion of $1/(a^n - 1)$.

Theorem (Fuchs 2003, Fuchs 2005)

 u_n , v_n with positive integer roots, one of which coprime to all the others. Then for any $\varepsilon > 0$ one has

 $gcd(u_n, v_n) < exp(\varepsilon n)$

for all large n (with effective constants).

Theorem (Fuchs 2003, Fuchs 2005)

 u_n , v_n with positive integer roots, one of which coprime to all the others. Then for any $\varepsilon > 0$ one has

 $gcd(u_n, v_n) < exp(\varepsilon n)$

for all large n (with effective constants).

Proof: Similar to Corvaja–Zannier, but even more technical–also needs several linear forms coming from different places.

Also some result in the mixed multiplicity case.

Theorem (Luca 2005) f, p, g, q polynomials with integer coefficients, $\varepsilon > 0$, then $gcd(f(n)a^n + p(n), g(n)b^n + q(n)) < exp(\varepsilon n)$ for all large n.

Also some result in the mixed multiplicity case.

Theorem (Luca 2005)

f, p, g, q polynomials with integer coefficients, $\varepsilon > 0$, then

$$gcd(f(n)a^n + p(n), g(n)b^n + q(n)) < exp(\varepsilon n)$$

for all large n.

This kind of results comes from studying the gcd(u-1, v-1) for u, v *S*-units or near *S*-units (Corvaja–Zannier 2005): this has many more applications.

To do: we know the distribution of the *n*'s for which $gcd(n, F_n) \le \alpha$ fixed and of those for which $gcd(n, F_n) = n$. It would be nice to extend our knowledge to $gcd(n, F_n) \ge \beta n$, $0 < \beta < 1$ fixed (presumably not too hard); even more interesting to estimate (probably hard)

$$G_{\varepsilon}(x) := \#\{n \leq x : \gcd(n, F_n) \leq n^{\varepsilon}\}.$$

To do: we know the distribution of the *n*'s for which $gcd(n, F_n) \le \alpha$ fixed and of those for which $gcd(n, F_n) = n$. It would be nice to extend our knowledge to $gcd(n, F_n) \ge \beta n$, $0 < \beta < 1$ fixed (presumably not too hard); even more interesting to estimate (probably hard)

$$G_{\varepsilon}(x) := \#\{n \leq x : \gcd(n, F_n) \leq n^{\varepsilon}\}.$$

Thanks for your attention!

emanuele.tron@u-bordeaux.fr