

Chebotarev theorem: a review

Let $\mathbb{K} \hookrightarrow \mathbb{L}$ be a finite-Galois extension of number fields, with $G:=\mathrm{Gal}(\mathbb{L}, \mathbb{K})$. Let $\mathcal{O}_{\mathbb{K}}, \mathcal{O}_{\mathbb{L}}$ be the corresponding rings of integral elements.
Fix a prime ideal $\mathfrak{p} \subseteq \mathcal{O}_{\mathbb{K}}$ not ramifying in \mathbb{L}. For each prime ideal \mathfrak{P} dividing $\mathfrak{p} \mathcal{O}_{\mathbb{L}}$, the Artin symbol $\left[\begin{array}{c}\mathbb{L} / \overline{\mathbb{K}} \\ \mathfrak{R}\end{array}\right]$ denotes the Frobenius automorphism corresponding to $\mathfrak{P} / \mathfrak{p}$, i.e. the element in G such that

$$
\left[\begin{array}{c}
\mathbb{L} / \mathbb{K} \\
\mathfrak{P}
\end{array}\right](\alpha)=\alpha^{\mathrm{Np}} \quad(\bmod \mathfrak{P}) \quad \forall \alpha \in \mathcal{O}_{\mathbb{L}} .
$$

The set $\left.\left\{\begin{array}{c}\mathbb{L} / \mathbb{K} \\ \mathfrak{P}\end{array}\right]: \mathfrak{P} \mid \mathfrak{p}\right\}$ is a conjugation class in G, also denoted $\left[\begin{array}{c}\mathbb{L} / \mathbb{K} \\ \mathfrak{p}\end{array}\right]$.
Conjecture (Frobenius) For every conjugation class C, there are infinitely many \mathfrak{p} with $\left[\begin{array}{c}\mathbb{L} / \mathbb{K} \\ \mathfrak{p}\end{array}\right]=C$; the Artin symbols equidistribute (in some sense) proportionally to $|C| /|G|$.

Theorem (Chebotarev) For every conjugation class C, the set

Chebotarev's theorem (PNT-like) For every conjugation class C

Chebotarev theorem: a review

Let $\mathbb{K} \hookrightarrow \mathbb{L}$ be a finite-Galois extension of number fields, with $G:=\mathrm{Gal}(\mathbb{L}, \mathbb{K})$. Let $\mathcal{O}_{\mathbb{K}}, \mathcal{O}_{\mathbb{L}}$ be the corresponding rings of integral elements.
Fix a prime ideal $\mathfrak{p} \subseteq \mathcal{O}_{\mathbb{K}}$ not ramifying in \mathbb{L}. For each prime ideal \mathfrak{P} dividing $\mathfrak{p} \mathcal{O}_{\mathbb{L}}$, the Artin symbol $\left[\begin{array}{c}\mathbb{L} / \mathbb{K} \\ \mathfrak{P}\end{array}\right]$ denotes the Frobenius automorphism corresponding to $\mathfrak{P} / \mathfrak{p}$, i.e. the element in G such that

$$
\left[\begin{array}{c}
\mathbb{L} / \mathbb{P} \\
\mathfrak{P}
\end{array}\right](\alpha)=\alpha^{\mathrm{N} \mathfrak{p}} \quad(\bmod \mathfrak{P}) \quad \forall \alpha \in \mathcal{O}_{\mathbb{L}} .
$$

The set $\left.\left\{\begin{array}{c}\mathbb{L} / \mathbb{K} \\ \mathfrak{P}\end{array}\right]: \mathfrak{P} \mid \mathfrak{p}\right\}$ is a conjugation class in G, also denoted $\left[\begin{array}{c}\mathbb{L} / \mathbb{K} \\ \mathfrak{p}\end{array}\right]$.
Conjecture (Frobenius) For every conjugation class C, there are infinitely many \mathfrak{p} with $\left[\begin{array}{c}\mathbb{L} / \mathbb{K} \\ \mathfrak{p}\end{array}\right]=C$; the Artin symbols equidistribute (in some sense) proportionally to $|C| /|G|$.

Theorem (Chebotarev) For every conjugation class C, the set

$$
\left\{\mathfrak{p}:\left[\begin{array}{c}
\mathbb{L} / \mathbb{K} \\
\mathfrak{p}
\end{array}\right]=C\right\} \quad \text { has Dirichlet density and it is }=|C| /|G| .
$$

Chebotarev's theorem (PNT-like) For every conjugation class C

Let $\mathbb{K} \hookrightarrow \mathbb{L}$ be a finite-Galois extension of number fields, with $G:=\mathrm{Gal}(\mathbb{L}, \mathbb{K})$. Let $\mathcal{O}_{\mathbb{K}}, \mathcal{O}_{\mathbb{L}}$ be the corresponding rings of integral elements.
Fix a prime ideal $\mathfrak{p} \subseteq \mathcal{O}_{\mathbb{K}}$ not ramifying in \mathbb{L}. For each prime ideal \mathfrak{P} dividing $\mathfrak{p} \mathcal{O}_{\mathbb{L}}$, the Artin symbol $\left[\begin{array}{c}\mathbb{L} / \overline{\mathbb{K}} \\ \mathfrak{R}\end{array}\right]$ denotes the Frobenius automorphism corresponding to $\mathfrak{P} / \mathfrak{p}$, i.e. the element in G such that

$$
\left[\begin{array}{c}
\mathbb{L} / \mathbb{P} \\
\mathfrak{P}
\end{array}\right](\alpha)=\alpha^{\mathrm{N} \mathfrak{p}} \quad(\bmod \mathfrak{P}) \quad \forall \alpha \in \mathcal{O}_{\mathbb{L}} .
$$

The set $\left.\left\{\begin{array}{c}\mathbb{L} / \mathbb{K} \\ \mathfrak{P}\end{array}\right]: \mathfrak{P} \mid \mathfrak{p}\right\}$ is a conjugation class in G, also denoted $\left[\begin{array}{c}\mathbb{L} / \mathbb{K} \\ \mathfrak{p}\end{array}\right]$.
Conjecture (Frobenius) For every conjugation class C, there are infinitely many \mathfrak{p} with $\left[\begin{array}{c}\mathbb{L} / \mathbb{K} \\ \mathfrak{p}\end{array}\right]=C$; the Artin symbols equidistribute (in some sense) proportionally to $|C| /|G|$.
Theorem (Chebotarev) For every conjugation class C, the set

$$
\left\{\mathfrak{p}:\left[\begin{array}{c}
\mathbb{L} / \mathbb{K} \\
\mathfrak{k}
\end{array}\right]=C\right\} \quad \text { has Dirichlet density and it is }=|C| /|G| .
$$

Chebotarev's theorem (PNT-like) For every conjugation class C

$$
\left|\left\{\mathfrak{p}:\left[\begin{array}{c}
\mathbb{L} / \mathbb{K} \\
\mathfrak{p}
\end{array}\right]=C, N \mathfrak{p} \leq x\right\}\right| \sim \frac{|C|}{|G|} \frac{x}{\log x} \quad x \rightarrow \infty
$$

Conditional explicit bounds

Let ϵ_{C} be the characteristic function of the elements in C, and let

$$
\psi_{C}(x):=\sum_{\mathrm{N} \mathfrak{I} \leq x} \epsilon_{C}\left(\left[\begin{array}{c}
\mathbb{L} / \mathbb{I} \mathbb{K}
\end{array}\right]\right) \Lambda_{\mathbb{K}}(\mathfrak{I}) .
$$

Theorem (Lagarias-Odlyzko '76) (GRH) There exist absolute constants c_{1}, c_{2} such that

$$
\left|\frac{|G|}{|C|} \psi_{c}(x)-x\right| \leq \sqrt{x}\left(c_{1} \log \Delta_{\mathbb{L}} \log x+c_{2} n_{\mathbb{L}} \log ^{2} x\right)
$$

Theorem (Oesterlé '79) (GRH) For $x \geq 1$

$$
\left|\frac{|G|}{|C|} \psi_{C}(x)-x\right| \leq \sqrt{x}\left(\left(\frac{1}{\pi} \log x+2\right) \log \right.
$$

Theorem (Schoenfeld '76) (RH) For $x \geq 73$

Theorem (Grenié-M.) (GRH) For $x \geq 1$

Conditional explicit bounds

Let ϵ_{C} be the characteristic function of the elements in C, and let

$$
\psi_{C}(x):=\sum_{\mathrm{N} \mathfrak{I} \leq x} \epsilon_{C}\left(\left[\begin{array}{c}
\mathbb{L} / \mathbb{I} \mathbb{K}
\end{array}\right]\right) \Lambda_{\mathbb{K}}(\mathfrak{I}) .
$$

Theorem (Lagarias-Odlyzko '76) (GRH) There exist absolute constants c_{1}, c_{2} such that

$$
\left|\frac{|G|}{|C|} \psi_{c}(x)-x\right| \leq \sqrt{x}\left(c_{1} \log \Delta_{\mathbb{L}} \log x+c_{2} n_{\mathbb{L}} \log ^{2} x\right)
$$

Theorem (Oesterlé '79) (GRH) For $x \geq 1$

$$
\left|\frac{|G|}{|C|} \psi_{C}(x)-x\right| \leq \sqrt{x}\left(\left(\frac{1}{\pi} \log x+2\right) \log \Delta_{\mathbb{L}}+\left(\frac{1}{2 \pi} \log ^{2} x+2\right) n_{\mathbb{L}}\right)
$$

Theorem (Schoenfeld '76) (RH) For $x \geq 73$

Theorem (Grenié-M.) (GRH) For $x \geq 1$
\square

Conditional explicit bounds

Let ϵ_{C} be the characteristic function of the elements in C, and let

$$
\psi_{C}(x):=\sum_{\mathrm{N} \mathfrak{I} \leq x} \epsilon_{C}\left(\left[\begin{array}{c}
\mathbb{L} / \mathbb{I} \mathbb{K}
\end{array}\right]\right) \Lambda_{\mathbb{K}}(\mathfrak{I}) .
$$

Theorem (Lagarias-Odlyzko '76) (GRH) There exist absolute constants c_{1}, c_{2} such that

$$
\left|\frac{|G|}{|C|} \psi_{c}(x)-x\right| \leq \sqrt{x}\left(c_{1} \log \Delta_{\mathbb{L}} \log x+c_{2} n_{\mathbb{L}} \log ^{2} x\right)
$$

Theorem (Oesterlé '79) (GRH) For $x \geq 1$

$$
\left|\frac{|G|}{|C|} \psi_{C}(x)-x\right| \leq \sqrt{x}\left(\left(\frac{1}{\pi} \log x+2\right) \log \Delta_{\mathbb{L}}+\left(\frac{1}{2 \pi} \log ^{2} x+2\right) n_{\mathbb{L}}\right) .
$$

Theorem (Schoenfeld '76) (RH) For $x \geq 73$

$$
|\psi(x)-x| \leq \frac{1}{8 \pi} \sqrt{x} \log ^{2} x
$$

Theorem (Grenié-M.) (GRH) For $x \geq 1$
$\left|\frac{|G|}{|C|} \psi_{C}(x)-x\right| \leq \sqrt{x}\left(\left(\frac{1}{2 \pi} \log x+2\right) \log \Delta_{\mathbb{L}}+\left(\frac{1}{8 \pi} \log ^{2} x+2\right) n_{\mathbb{L}}\right)$

Conditional explicit bounds

Let ϵ_{C} be the characteristic function of the elements in C, and let

$$
\psi_{C}(x):=\sum_{\mathrm{N} \mathfrak{I} \leq x} \epsilon_{C}\left(\left[\begin{array}{c}
\mathbb{L} / \mathbb{I} \mathbb{K}
\end{array}\right]\right) \Lambda_{\mathbb{K}}(\mathfrak{I}) .
$$

Theorem (Lagarias-Odlyzko '76) (GRH) There exist absolute constants c_{1}, c_{2} such that

$$
\left|\frac{|G|}{|C|} \psi_{c}(x)-x\right| \leq \sqrt{x}\left(c_{1} \log \Delta_{\mathbb{L}} \log x+c_{2} n_{\mathbb{L}} \log ^{2} x\right)
$$

Theorem (Oesterlé '79) (GRH) For $x \geq 1$

$$
\left|\frac{|G|}{|C|} \psi_{C}(x)-x\right| \leq \sqrt{x}\left(\left(\frac{1}{\pi} \log x+2\right) \log \Delta_{\mathbb{L}}+\left(\frac{1}{2 \pi} \log ^{2} x+2\right) n_{\mathbb{L}}\right) .
$$

Theorem (Schoenfeld '76) (RH) For $x \geq 73$

$$
|\psi(x)-x| \leq \frac{1}{8 \pi} \sqrt{x} \log ^{2} x
$$

Theorem (Grenié-M.) (GRH) For $x \geq 1$
$\left|\frac{|G|}{|C|} \psi_{C}(x)-x\right| \leq \sqrt{x}\left(\left(\frac{1}{2 \pi} \log x+2\right) \log \Delta_{\mathbb{L}}+\left(\frac{1}{8 \pi} \log ^{2} x+2\right) n_{\mathbb{L}}\right)$.

Some tools: Include the ramifying prime ideals and Artin/Hecke

$$
\theta\left(C ; \mathfrak{p}^{m}\right):=\frac{1}{|I|} \sum_{a \in I} \epsilon_{C}\left(\tau^{m} a\right)
$$

(I is the inertia group and τ is any of Frobenius automorphisms corresponding to $\mathfrak{P} / \mathfrak{p}$).

$$
\psi(C ; x):=\sum_{\mathrm{N} \mathfrak{I} \leq x} \theta(C ; \mathfrak{I}) \wedge_{\mathbb{K}}(\mathfrak{I}) .
$$

Write $\theta\left(C_{;} \cdot\right)$ as linear combinations of irreducible characters for G :

Since C is fixed and $H:=\langle g\rangle$ is cyclic, we have also

Some tools: Include the ramifying prime ideals and Artin/Hecke

$$
\theta\left(C ; \mathfrak{p}^{m}\right):=\frac{1}{|I|} \sum_{a \in I} \epsilon_{C}\left(\tau^{m} a\right)
$$

(I is the inertia group and τ is any of Frobenius automorphisms corresponding to $\mathfrak{P} / \mathfrak{p}$).

$$
\psi(C ; x):=\sum_{\mathrm{N} \mathfrak{J} \leq x} \theta(C ; \mathfrak{I}) \wedge_{\mathbb{K}}(\mathfrak{I}) .
$$

Write $\theta(C ; \cdot)$ as linear combinations of irreducible characters for G :

$$
\begin{gathered}
\theta\left(C ; \mathfrak{p}^{m}\right):=\frac{|C|}{|G|} \sum_{\phi \in \hat{G}} \bar{\phi}(g) \phi_{\mathbb{K}}\left(\mathfrak{p}^{m}\right) \quad \phi_{\mathbb{K}}\left(\mathfrak{p}^{m}\right):=\frac{1}{|I|} \sum_{a \in I} \phi\left(\tau^{m} a\right) \quad \text { any } g \in C . \\
\sum_{\mathfrak{J}} \theta(C ; \mathfrak{I}) \Lambda_{\mathbb{K}}(\mathfrak{I})(\mathrm{N} \mathfrak{I})^{-s}=-\frac{|C|}{|G|} \sum_{\phi \in \hat{G}} \bar{\phi}(g) \frac{L^{\prime}}{L}(s, \phi, \mathbb{L} / \mathbb{K}) \quad \quad \text { (Artin L-functions) }
\end{gathered}
$$

Since C is fixed and $H:=\langle g\rangle$ is cyclic, we have also

Some tools: Include the ramifying prime ideals and Artin/Hecke

$$
\theta\left(C ; \mathfrak{p}^{m}\right):=\frac{1}{|I|} \sum_{a \in I} \epsilon_{C}\left(\tau^{m} a\right)
$$

(I is the inertia group and τ is any of Frobenius automorphisms corresponding to $\mathfrak{P} / \mathfrak{p}$).

$$
\psi(C ; x):=\sum_{N \mathfrak{I} \leq x} \theta(C ; \mathfrak{I}) \wedge_{\mathbb{K}}(\mathfrak{I}) .
$$

Write $\theta(C ; \cdot)$ as linear combinations of irreducible characters for G :

$$
\begin{gathered}
\theta\left(C ; \mathfrak{p}^{m}\right):=\frac{|C|}{|G|} \sum_{\phi \in \hat{G}} \bar{\phi}(g) \phi_{\mathbb{K}}\left(\mathfrak{p}^{m}\right) \quad \phi_{\mathbb{K}}\left(\mathfrak{p}^{m}\right):=\frac{1}{|I|} \sum_{a \in I} \phi\left(\tau^{m} a\right) \quad \text { any } g \in C . \\
\sum_{\mathfrak{I}} \theta(C ; \mathfrak{I}) \Lambda_{\mathbb{K}}(\mathfrak{I})(\mathrm{NI})^{-s}=-\frac{|C|}{|G|} \sum_{\phi \in \hat{G}} \bar{\phi}(g) \frac{L^{\prime}}{L}(s, \phi, \mathbb{L} / \mathbb{K}) \quad \text { (Artin L-functions) }
\end{gathered}
$$

Since C is fixed and $H:=\langle g\rangle$ is cyclic, we have also

$$
\theta\left(C ; \mathfrak{p}^{m}\right):=\frac{|C|}{|G|} \sum_{\chi \in \hat{H}} \bar{\chi}(g) \chi_{\mathbb{K}}\left(\mathfrak{p}^{m}\right) \quad \chi_{\mathbb{K}}\left(\mathfrak{p}^{m}\right):=\frac{1}{|I|} \sum_{a \in I}\left(\operatorname{Ind}_{H}^{G}\right) \chi\left(\tau^{m} a\right) .
$$

$$
\sum_{\mathfrak{I}} \theta(C ; \mathfrak{I}) \Lambda_{\mathbb{K}}(\mathfrak{I})(\mathrm{N} \mathfrak{I})^{-s}=-\frac{|C|}{|G|} \sum_{\chi \in \hat{H}} \bar{\chi}(g) \frac{L^{\prime}}{L}(s, \chi, \mathbb{L} / \mathbb{E})
$$

where $\mathbb{E}:=\mathbb{L}^{H}$ and each $L(s, \chi, \mathbb{L} / \mathbb{E})$ is abelian Artin, hence Hecke L-function (by class field theory).

Some tools: smoothing

$$
\psi^{(1)}(C ; x):=\int_{0}^{x} \psi(C ; u) \mathrm{d} u=\sum_{\mathrm{N} \mathfrak{I} \leq x}(x-\mathrm{N} \mathfrak{I}) \theta(C ; \mathfrak{I}) \Lambda_{\mathbb{K}}(\mathfrak{I}) .
$$

From the integral representation

$$
\psi^{(1)}(C ; x)=-\frac{|C|}{|G|} \sum_{\chi} \bar{\chi}(g) \frac{1}{2 \pi i} \int_{2-i \infty}^{2+i \infty} \frac{L^{\prime}}{L}(s, \chi, \mathbb{L} / \mathbb{E}) \frac{x^{s+1}}{s(s+1)} \mathrm{d} s \quad \forall x \geq 1
$$

moving the integration line to the left-hand side one gets:

Some tools: smoothing

$$
\psi^{(1)}(C ; x):=\int_{0}^{x} \psi(C ; u) \mathrm{d} u=\sum_{\mathrm{N} \mathfrak{I} \leq x}(x-\mathrm{N} \mathfrak{I}) \theta(C ; \mathfrak{I}) \Lambda_{\mathbb{K}}(\mathfrak{I}) .
$$

From the integral representation

$$
\psi^{(1)}(C ; x)=-\frac{|C|}{|G|} \sum_{\chi} \bar{\chi}(g) \frac{1}{2 \pi i} \int_{2-i \infty}^{2+i \infty} \frac{L^{\prime}}{L}(s, \chi, \mathbb{L} / \mathbb{E}) \frac{x^{s+1}}{s(s+1)} \mathrm{d} s \quad \forall x \geq 1
$$

moving the integration line to the left-hand side one gets:

$$
\frac{|G|}{|C|} \psi^{(1)}(C ; x)=
$$

Some tools: smoothing

$$
\psi^{(1)}(C ; x):=\int_{0}^{x} \psi(C ; u) \mathrm{d} u=\sum_{\mathrm{N} \mathfrak{I} \leq x}(x-\mathrm{N} \mathfrak{I}) \theta(C ; \mathfrak{I}) \Lambda_{\mathbb{K}}(\mathfrak{I}) .
$$

From the integral representation

$$
\psi^{(1)}(C ; x)=-\frac{|C|}{|G|} \sum_{\chi} \bar{\chi}(g) \frac{1}{2 \pi i} \int_{2-i \infty}^{2+i \infty} \frac{L^{\prime}}{L}(s, \chi, \mathbb{L} / \mathbb{E}) \frac{x^{s+1}}{s(s+1)} \mathrm{d} s \quad \forall x \geq 1
$$

moving the integration line to the left-hand side one gets:

$$
\frac{|G|}{|C|} \psi^{(1)}(C ; x)=\frac{x^{2}}{2}
$$

Some tools: smoothing

$$
\psi^{(1)}(C ; x):=\int_{0}^{x} \psi(C ; u) \mathrm{d} u=\sum_{\mathrm{N} \mathfrak{I} \leq x}(x-\mathrm{N} \mathfrak{I}) \theta(C ; \mathfrak{I}) \Lambda_{\mathbb{K}}(\mathfrak{I}) .
$$

From the integral representation

$$
\psi^{(1)}(C ; x)=-\frac{|C|}{|G|} \sum_{\chi} \bar{\chi}(g) \frac{1}{2 \pi i} \int_{2-i \infty}^{2+i \infty} \frac{L^{\prime}}{L}(s, \chi, \mathbb{L} / \mathbb{E}) \frac{x^{s+1}}{s(s+1)} \mathrm{d} s \quad \forall x \geq 1
$$

moving the integration line to the left-hand side one gets:

$$
\frac{|G|}{|C|} \psi^{(1)}(C ; x)=\frac{x^{2}}{2}-\sum_{\rho} \epsilon(\rho) \frac{x^{\rho+1}}{\rho(\rho+1)}
$$

Some tools: smoothing

$$
\psi^{(1)}(C ; x):=\int_{0}^{x} \psi(C ; u) \mathrm{d} u=\sum_{\mathrm{N} \mathfrak{I} \leq x}(x-\mathrm{N} \mathfrak{I}) \theta(C ; \mathfrak{I}) \Lambda_{\mathbb{K}}(\mathfrak{I}) .
$$

From the integral representation

$$
\psi^{(1)}(C ; x)=-\frac{|C|}{|G|} \sum_{\chi} \bar{\chi}(g) \frac{1}{2 \pi i} \int_{2-i \infty}^{2+i \infty} \frac{L^{\prime}}{L}(s, \chi, \mathbb{L} / \mathbb{E}) \frac{x^{s+1}}{s(s+1)} \mathrm{d} s \quad \forall x \geq 1
$$

moving the integration line to the left-hand side one gets:

$$
\frac{|G|}{|C|} \psi^{(1)}(C ; x)=\frac{x^{2}}{2}-\sum_{\rho} \epsilon(\rho) \frac{x^{\rho+1}}{\rho(\rho+1)}-x r_{C}+r_{C}^{\prime}
$$

Some tools: smoothing

$$
\psi^{(1)}(C ; x):=\int_{0}^{x} \psi(C ; u) \mathrm{d} u=\sum_{\mathrm{N} \mathfrak{I} \leq x}(x-\mathrm{N} \mathfrak{I}) \theta(C ; \mathfrak{I}) \Lambda_{\mathbb{K}}(\mathfrak{I}) .
$$

From the integral representation

$$
\psi^{(1)}(C ; x)=-\frac{|C|}{|G|} \sum_{\chi} \bar{\chi}(g) \frac{1}{2 \pi i} \int_{2-i \infty}^{2+i \infty} \frac{L^{\prime}}{L}(s, \chi, \mathbb{L} / \mathbb{E}) \frac{x^{s+1}}{s(s+1)} \mathrm{d} s \quad \forall x \geq 1
$$

moving the integration line to the left-hand side one gets:

$$
\frac{|G|}{|C|} \psi^{(1)}(C ; x)=\frac{x^{2}}{2}-\sum_{\rho} \epsilon(\rho) \frac{x^{\rho+1}}{\rho(\rho+1)}-x r_{C}+r_{C}^{\prime}+R_{C}(x) .
$$

Some tools: smoothing

$$
\psi^{(1)}(C ; x):=\int_{0}^{x} \psi(C ; u) \mathrm{d} u=\sum_{\mathrm{N} \mathfrak{I} \leq x}(x-\mathrm{N} \mathfrak{I}) \theta(C ; \mathfrak{I}) \Lambda_{\mathbb{K}}(\mathfrak{I}) .
$$

From the integral representation

$$
\psi^{(1)}(C ; x)=-\frac{|C|}{|G|} \sum_{\chi} \bar{\chi}(g) \frac{1}{2 \pi i} \int_{2-i \infty}^{2+i \infty} \frac{L^{\prime}}{L}(s, \chi, \mathbb{L} / \mathbb{E}) \frac{x^{s+1}}{s(s+1)} \mathrm{d} s \quad \forall x \geq 1
$$

moving the integration line to the left-hand side one gets:

$$
\frac{|G|}{|C|} \psi^{(1)}(C ; x)=\frac{x^{2}}{2}-\sum_{\rho} \epsilon(\rho) \frac{x^{\rho+1}}{\rho(\rho+1)}-x r_{C}+r_{C}^{\prime}+R_{C}(x)
$$

Some tools: positive coefficients

Since $\psi^{(1)}(C ; x)=\sum_{\mathrm{N} \mathfrak{\Im} \leq x}(x-\mathrm{N} \mathfrak{I}) \theta(C ; \mathfrak{I}) \wedge_{\mathbb{K}}(\mathfrak{I})$ and $\theta(C ; \mathfrak{I})$ is nonnegative, one has

$$
\begin{array}{ll}
\psi(C ; x) \leq\left[\psi^{(1)}(C ; x+h)-\psi^{(1)}(C ; x)\right] / h & \text { as } h>0, \\
\psi(C ; x) \geq\left[\psi^{(1)}(C ; x+h)-\psi^{(1)}(C ; x)\right] / h & \text { as }-x<h<0 .
\end{array}
$$

So, we can recover bounds for $\psi(C ; x)$ from analogous bounds for $\psi^{(1)}(C ; x)$. This is a good idea since the results for $\psi^{(1)}(C ; x)$ are stronger.
This approach needs bounds for several "non-trivial" objects. For example

(ρ 's are the non trivial zeros for $\zeta_{\mathbb{L}}$) which is split as

and we have developed some tools producing goods bounds.

Some tools: positive coefficients

Since $\psi^{(1)}(C ; x)=\sum_{\mathrm{N} \mathfrak{I} \leq x}(x-\mathrm{N} \mathfrak{I}) \theta(C ; \mathfrak{I}) \wedge_{\mathbb{K}}(\mathfrak{I})$ and $\theta(C ; \mathfrak{I})$ is nonnegative, one has

$$
\begin{array}{ll}
\psi(C ; x) \leq\left[\psi^{(1)}(C ; x+h)-\psi^{(1)}(C ; x)\right] / h & \text { as } h>0, \\
\psi(C ; x) \geq\left[\psi^{(1)}(C ; x+h)-\psi^{(1)}(C ; x)\right] / h & \text { as }-x<h<0 .
\end{array}
$$

So, we can recover bounds for $\psi(C ; x)$ from analogous bounds for $\psi^{(1)}(C ; x)$. This is a good idea since the results for $\psi^{(1)}(C ; x)$ are stronger.
This approach needs bounds for several "non-trivial" objects. For example

$$
\left|\sum_{\rho} \epsilon(\rho) \frac{(x+h)^{\rho+1}-x^{\rho+1}}{h \rho(\rho+1)}\right|
$$

(ρ 's are the non trivial zeros for $\zeta_{\mathbb{L}}$) which is split as

$$
\begin{aligned}
& \leq \sum_{|\gamma| \leq T}\left|\frac{x^{\rho}}{\rho}\right|+\sum_{|\gamma| \leq T}\left|\frac{(x+h)^{\rho+1}-x^{\rho+1}-h(\rho+1) x^{\rho}}{h \rho(\rho+1)}\right|+\sum_{|\gamma|>T}\left|\frac{(x+h)^{\rho+1}-x^{\rho+1}}{h \rho(\rho+1)}\right| \\
& \leq \sum_{|\gamma| \leq T} \frac{\sqrt{x}}{|\rho|}+\frac{|h|}{\sqrt{x}} \sum_{|\gamma| \leq T} 1+\left(2 \frac{x^{3 / 2}}{|h|}+o(1)\right) \sum_{|\gamma|>T} \frac{1}{|\rho|^{2}}
\end{aligned}
$$

and we have developed some tools producing goods bounds.

An intermediate result

The strategy produces the following intermediate result.
Theorem (Grenié-M.) (GRH) Let $x \geq 4$ and $T \geq 2 \pi$ then:

$$
\begin{gathered}
\left|\frac{|G|}{|C|} \psi(C ; x)-x\right| \leq \sqrt{x}\left[F(x, T) \log \Delta_{\mathbb{L}}+G(x, T) n_{\mathbb{L}}+H(x, T)\right] \\
F(x, T)=\frac{1}{\pi} \log \left(\frac{T}{2 \pi}\right)+\cdots, \quad G(x, T)=\frac{1}{2 \pi} \log ^{2}\left(\frac{T}{2 \pi}\right)+\cdots, \\
H(x, T)=\frac{\sqrt{x}}{T}+\cdots .
\end{gathered}
$$

Setting $T \approx_{\mathbb{L}} \sqrt{x}$ (well, actually a lot of computations need here, to control the secondary terms which depend on $\mathbb{K}, \mathbb{L}, G$ and the class C) we reach a result similar to but for $\psi(C ; x)$ (hence using $\theta(C)$, which is a smoothed version of the characteristic function for C), which is related to $\psi_{C}(x)$ (hence using the characteristic function of C) by

$$
\psi(C ; x)=\psi_{C}(x)+\text { ramification term }
$$

The ramification term is positive, hence the upper bound for $\psi(C ; x)$ implies the same upper bound for $\psi_{C}(x)$. For lower bounds some difficult tricks are need, in order to reach the same conclusion for $\psi_{C}(x)$ and for $\psi(C ; x)$.

An intermediate result

The strategy produces the following intermediate result.
Theorem (Grenié-M.) (GRH) Let $x \geq 4$ and $T \geq 2 \pi$ then:

$$
\begin{gathered}
\left|\frac{|G|}{|C|} \psi(C ; x)-x\right| \leq \sqrt{x}\left[F(x, T) \log \Delta_{\mathbb{L}}+G(x, T) n_{\mathbb{L}}+H(x, T)\right] \\
F(x, T)=\frac{1}{\pi} \log \left(\frac{T}{2 \pi}\right)+\cdots, \quad G(x, T)=\frac{1}{2 \pi} \log ^{2}\left(\frac{T}{2 \pi}\right)+\cdots, \\
H(x, T)=\frac{\sqrt{x}}{T}+\cdots .
\end{gathered}
$$

Setting $T \approx_{\mathbb{L}} \sqrt{x}$ (well, actually a lot of computations need here, to control the secondary terms which depend on $\mathbb{K}, \mathbb{L}, G$ and the class C) we reach a result similar to 4 Back but for $\psi(C ; x)$ (hence using $\theta(C)$, which is a smoothed version of the characteristic function for C), which is related to $\psi_{C}(x)$ (hence using the characteristic function of C) by

$$
\psi(C ; x)=\psi_{C}(x)+\text { ramification term }
$$

The ramification term is positive, hence the upper bound for $\psi(C ; x)$ implies the same upper bound for $\psi_{C}(x)$. For lower bounds some difficult tricks are need, in order to reach the same conclusion for $\psi_{C}(x)$ and for $\psi(C ; x)$.

An intermediate result

The strategy produces the following intermediate result.
Theorem (Grenié-M.) (GRH) Let $x \geq 4$ and $T \geq 2 \pi$ then:

$$
\begin{gathered}
\left|\frac{|G|}{|C|} \psi(C ; x)-x\right| \leq \sqrt{x}\left[F(x, T) \log \Delta_{\mathbb{L}}+G(x, T) n_{\mathbb{L}}+H(x, T)\right] \\
F(x, T)=\frac{1}{\pi} \log \left(\frac{T}{2 \pi}\right)+\cdots, \quad G(x, T)=\frac{1}{2 \pi} \log ^{2}\left(\frac{T}{2 \pi}\right)+\cdots, \\
H(x, T)=\frac{\sqrt{x}}{T}+\cdots,
\end{gathered}
$$

Setting $T \approx_{\mathbb{L}} \sqrt{x}$ (well, actually a lot of computations need here, to control the secondary terms which depend on $\mathbb{K}, \mathbb{L}, G$ and the class C) we reach a result similar to 4 Back but for $\psi(C ; x)$ (hence using $\theta(C)$, which is a smoothed version of the characteristic function for C), which is related to $\psi_{C}(x)$ (hence using the characteristic function of C) by

$$
\psi(C ; x)=\psi_{C}(x)+\text { ramification term }
$$

The ramification term is positive, hence the upper bound for $\psi(C ; x)$ implies the same upper bound for $\psi_{C}(x)$. For lower bounds some difficult tricks are need, in order to reach the same conclusion for $\psi_{C}(x)$ and for $\psi(C ; x)$.

$$
\text { ramification term } \leq \min \left(\frac{|C|}{p}, 1\right) n_{\mathbb{K}} \mathfrak{n} \log x
$$

where p is the smallest prime divisor of $|G|$, and $\mathfrak{n}:=\frac{1}{n_{\mathbb{K}}} \sum_{\mathfrak{p} \mid \Delta_{\mathbb{L} / \mathbb{K}}} 1$.

$$
\mathfrak{n} \leq \begin{cases}\frac{\log \left(\Delta_{\mathbb{L}}^{1 / n_{\mathbb{K}}}\right)}{\log 4} & \text { for all fields but } \mathbb{L}=\mathbb{Q}[\pm \sqrt{3}], \mathbb{Q}[\pm \sqrt{15}], \\ \frac{\log \left(\Delta_{\mathbb{L}}^{1 / n_{\mathbb{K}}}\right)}{\log 49} & \text { if } n_{\mathbb{L}}=3, \\ \frac{\log \left(\Delta_{\mathbb{L}}^{1 / n_{\mathbb{K}}}\right)}{\log 22} & \text { if }|G| \text { is not a prime (with } 25 \text { exceptions), } \\ \frac{\log \left(\Delta_{\mathbb{L}}^{1 / n_{\mathbb{K}}}\right)}{\log \log \left(\Delta_{\mathbb{L}}^{1 / n_{\mathbb{K}}}\right)-1.1714} & \text { if } \log \left(\Delta_{\mathbb{L}}^{1 / n_{\mathbb{K}}}\right)>e^{1.1714} .\end{cases}
$$

The last bound is a generalization of Robin's result

$$
\omega(n):=\sum_{p \mid n} 1 \leq \frac{\log n}{\log \log n-1.1714}
$$

Consequences

By partial summation:

Theorem (Grenié-M.) (GRH) For $x \geq 2$
$\left|\frac{|G|}{|C|} \pi_{C}(x)-\int_{2}^{x} \frac{\mathrm{~d} u}{\log u}\right| \leq \sqrt{x}\left(\left(\frac{1}{2 \pi}+\frac{3}{\log x}\right) \log \Delta_{\mathbb{L}}+\left(\frac{\log x}{8 \pi}+\frac{1}{4 \pi}+\frac{6}{\log x}\right) n_{\mathbb{L}}\right)$.

The bounds coming from the estimations for $\psi(C ; x)$ prove that there is a prime ideal with a given Frobenius and a norm bounded by $(0.1+o(1))\left(\log \Delta_{\mathbb{L}}\right)^{2}\left(\log \log \Delta_{\mathbb{L}}\right)^{4}$.
Using $\psi^{(1)}\left(C_{i} \times\right)$ we can remove the double log term.
Theorem (Grenié-M.) (GRH) Let $k \geq 1$. Then $\pi_{C}(x) \geq k$ when

$$
x \geq 1.16\left(\log \Delta_{\mathrm{L}}+\left(\frac{k+5}{3}\right)|G|+15\right)^{2}
$$

Under the same hypotheses Bach proved that $\pi_{C}(x) \geq 1$ when

$$
x \geq 1\left(\log \Lambda_{L}+\text { const. }\right)^{2}
$$

but its argument deals only $k=1$.

By partial summation:
Theorem (Grenié-M.) (GRH) For $x \geq 2$

$$
\left|\frac{|G|}{|C|} \pi_{C}(x)-\int_{2}^{x} \frac{\mathrm{~d} u}{\log u}\right| \leq \sqrt{x}\left(\left(\frac{1}{2 \pi}+\frac{3}{\log x}\right) \log \Delta_{\mathbb{L}}+\left(\frac{\log x}{8 \pi}+\frac{1}{4 \pi}+\frac{6}{\log x}\right) n_{\mathbb{L}}\right)
$$

The bounds coming from the estimations for $\psi(C ; x)$ prove that there is a prime ideal with a given Frobenius and a norm bounded by $(0.1+o(1))\left(\log \Delta_{\mathbb{L}}\right)^{2}\left(\log \log \Delta_{\mathbb{L}}\right)^{4}$. Using $\psi^{(1)}(C ; x)$ we can remove the double log term.
Theorem (Grenié-M.) (GRH) Let $k \geq 1$. Then $\pi_{C}(x) \geq k$ when

$$
x \geq 1.16\left(\log \Delta_{\mathbb{L}}+\left(\frac{k+5}{3}\right)|G|+15\right)^{2}
$$

Under the same hypotheses Bach proved that $\pi_{C}(x) \geq 1$ when

$$
x \geq 1\left(\log \Delta_{\mathbb{L}}+\text { const. }\right)^{2}
$$

but its argument deals only $k=1$.

Thanks you for your attention

