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Chebotarev theorem: a review

Let K < L be a finite-Galois extension of number fields, with G := Gal(L,K). Let
Ok, O, be the corresponding rings of integral elements.

Fix a prime ideal p C Ok not ramifying in L. For each prime ideal 3 dividing pOy,,
the Artin symbol [H‘/K] denotes the Frobenius automorphism corresponding to 3/p, i.e.
the element in G such that

[/¥(a) =™ (modP)  VaeOL.
The set {[LQGK] :PB|p} is a conjugation class in G, also denoted [L'/JK].

Conjectu re (Frobenius) For every conjugation class C, there are infinitely many

p with [L/ ]K] = C; the Artin symbols equidistribute (in some sense) proportionally to
ICl/16G].
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Chebotarev theorem: a review

Let K < L be a finite-Galois extension of number fields, with G := Gal(L,K). Let
Ok, O, be the corresponding rings of integral elements.

Fix a prime ideal p C Ok not ramifying in L. For each prime ideal 3 dividing pOy,,
the Artin symbol [H‘/K] denotes the Frobenius automorphism corresponding to 3/p, i.e.
the element in G such that

[/¥(a) =™ (modP)  VaeOL.
The set {[LQGK] :PB|p} is a conjugation class in G, also denoted [L'/JK].

Conjectu re (Frobenius) For every conjugation class C, there are infinitely many

p with [L/ ]K] = C; the Artin symbols equidistribute (in some sense) proportionally to
ICl/16G].

Theorem (Chebotarev) For every conjugation class C, the set

{p: [L{JK] = C} has Dirichlet density and it is = |C|/|G]|.
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Chebotarev theorem: a review

Let K < L be a finite-Galois extension of number fields, with G := Gal(L,K). Let
Ok, O, be the corresponding rings of integral elements.

Fix a prime ideal p C Ok not ramifying in L. For each prime ideal 3 dividing pOy,,
the Artin symbol [H‘/K] denotes the Frobenius automorphism corresponding to 3/p, i.e.
the element in G such that

[/¥(a) =™ (modP)  VaeOL.
The set {[LQGK] :PB|p} is a conjugation class in G, also denoted [L'/JK].

Conjecture (Frobenius) For every conjugation class C, there are infinitely many

p with [L/ ]K] = C; the Artin symbols equidistribute (in some sense) proportionally to
ICl/16G].

Theorem (Chebotarev) For every conjugation class C, the set

{p: [L{JK] = C} has Dirichlet density and it is = |C|/|G]|.

Chebotarev's theorem (PNT—er) For every conjugation class C

C| x
MK = ¢, Np < ~|— .
Hp: [*7] = C,Np < x}| Gliogx X7
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Conditional explicit bounds

Let ec be the characteristic function of the elements in C, and let

Ye(x) = D ec([M)A=(3).

NI<x

Theorem (Lagarias-Odlyzko '76) (GRH) There exist absolute constants c1,c

such that G
%Tpc(x) — x| < V/x(c1 log Ay, log x + cany, log® x).
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Conditional explicit bounds

Let ec be the characteristic function of the elements in C, and let

Ye(x) = D ec([M)A=(3).

NI<x

Theorem (Lagarias-Odlyzko '76) (GRH) There exist absolute constants c1,c

such that G
%Tpc(x) — x| < V/x(c1 log Ay, log x + cany, log® x).

Theorem (Oesterlé '79) (GRH) For x > 1

1 ) = xl < VR((F togx +2)log Av + (- log?x +2)m.).
|C] ™ 21
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Conditional explicit bounds

Let ec be the characteristic function of the elements in C, and let

ve() = 3 e[ D).
NI<x
Theorem (Lagarias-Odlyzko '76) (GRH) There exist absolute constants c1,c
such that G|

mwc(x) — x| < v/x(c1 log Ar log x + con, log? x).

Theorem (Oesterlé '79) (GRH) For x > 1
Gl

1
TG00 = x1 < VR(( o x+ 2)log A+ (log?x +2)n.).

Theorem (Schoenfeld '76) (RH) For x > 73

(x) — x| < /X log? x.
81
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Conditional explicit bounds

Let ec be the characteristic function of the elements in C, and let

Ye(x) = D ec([M)A=(3).

NI<x

Theorem (Lagarias-Odlyzko '76) (GRH) There exist absolute constants c1,c

such that
|G|

6960 x| < VX(e1log A log x + can log? x).

Theorem (Oesterlé '79) (GRH) For x > 1

1 1
|%¢C(X) —x| < VX((- logx +2)log AL + (- log” x +2)n. ).

Theorem (Schoenfeld '76) (RH) For x > 73
() — x| < Vxlog?x.
8m

Theorem (Grenié-M.) (GRH) Forx > 1

|IGI

|C|7,Z;c(x)—x| < \/_((—Iogx+2) IogAL—i-(—Iog x+2)nL)
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Some tools: Include the ramifying prime ideals and Artin/Hecke

1
0(C;p™) = — Z ec(ta)
<=
(1 is the inertia group and 7 is any of Frobenius automorphisms corresponding to B/p).
P(Cix) = D 0(C;NAk(D).

NI<x
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Some tools: Include the ramifying prime ideals and Artin/Hecke

0(C;p™) = ZE(_‘(T a)
1] pvey
(1 is the inertia group and 7 is any of Frobenius automorphisms corresponding to B/p).

P(Cix) = D 0(C;NAk(D).

NI<x

Write 6(C;-) as linear combinations of irreducible characters for G:

LS~ Be)onem)  dlom) = o LS g(rma)  anygecC.

1G] :
PeC ac

> (G AR(I)(NT) " = _l
J

0(C;p™) =

|G| Z ¢(g)—(s ¢, L/K) (Artin L-functions)
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Some tools: Include the ramifying prime ideals and Artin/Hecke

0(C;p™) = ZEC(T a)
1] pvey
(1 is the inertia group and 7 is any of Frobenius automorphisms corresponding to B/p).

P(Cix) = D 0(C;NAk(D).

NI<x

Write 6(C;-) as linear combinations of irreducible characters for G:

0CH) = 1o Y H@o™) ™) = 3 e"a) g e C
»eC a€l
> 0(C:NA(I)(NI)~* = :g: Z qb(g)—(s #,L/K) (Artin L-functions)
J

Since C is fixed and H := (g) is cycllc, we have also

UCH™) = 1ot SR xS ndfx(r )

|G| xeA acl

C

> 0(C A (I)(NT)~F = _ld > x(g) (s, x, L/E) (Hecke L-functions)
J x€A

where E := 1" and each L(s, x,L/E) is abelian Artin, hence Hecke L-function (by class

field theory).

G|
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Some tools: smoothing

P (Cix) = /oxw(C;u)duz S (x— ND)O(C NA().

NI<x
From the integral representation
|C| _ 1 2+ioo S+1
P(Cix) = == > x(g) 5= (S XJL/E)— Vx> 1,
|G| ; 270 Jo—iso ( + 1)
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Some tools: smoothing

X
$O(Cix) = / W(Cuydu= 3" (x — ND)O(C; D« (3).
0 NI<x
From the integral representation
xS+

(1) . :_u _ i 2+ioo y
P(C ;X(g) .L_iw —(s, x,]L/]E)—( Py Vx > 1,

moving the integration line to the left-hand side one gets:

|G

1) =
R
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Some tools: smoothing

X
$O(Cix) = / W(Cuydu= 3" (x — ND)O(C; D« (3).
0 NI<x
From the integral representation
xS+

(1) . :_u _ i 2+ioo y
P(C ;X(g) .L_iw —(s, x,]L/]E)—( Py Vx > 1,

moving the integration line to the left-hand side one gets:

the pole in 1 gives the
main term.

6]
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Some tools: smoothing

P (Cix) = /oxw(C;u)duz S (x— ND)O(C NA().

NJ<x
From the integral representation
C| 1 2+ioo s+1
W(cix) = 1S5 —/ s ,IL]E— Vx > 1,
$(C;x) |G|§X:x(g)2m. - ( X L/E) gy >
moving the integration line to the left-hand side one gets
o | p runs on the set of zeros
e o for all L(s,x,L/E); since
. . T, L(s, x. L/E) = Gu(s),
° this is the set of zeros
0 L 2 » for the Dedekind of L.
° T Weights € satisfy |e(p)| =
AR 1.

161 ) (cix) = ——Z(p) -
IC] plp +1)
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Some tools: smoothing

D(Cix) :=/ W(Cuydu= 3" (x — ND)O(C; D« (3).
0 NI<x
From the integral representation
C 1 2+ioo
WC = d S " [ Tl
X — 100

x5+1

(+1)

zeros in 0 and —1 pro-
® o duce special terms be-

cause they are poles for
T the kernel.
°

|G| (1) xP T o /
e = Ze(p)—p(pH) xrctrt
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Some tools: smoothing

P (Cix) = /oxw(C;u)duz S (x— ND)O(C NA().

From the integral

1/,(1)(C;X -

representation

|C| _ 1 /2+ioo
|G|;X(g) i Jo—ico

NI<x

x5+1

— (s, XJL/]E)m

moving the integration line to the left-hand side one gets:

|G|
IC]

°
e o
All other zeros produce
® o an explicit term of size
° L
1 , _ xlogx which is indepen-
T dent of the discriminant.
°
o o

w(l (Cix) = 2_ ( )—Xp+1 - c+Re(x)
E € xrc+re+Re(x).
P P plp+1) crierre
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An effective Chebotarev theorem under GRH



Some tools: smoothing

P (C; %) == /OX Y(Cu)du = Z (x = NT)O(C; TNk (7).

NJI<x

From the integral representation
s+1

W(cix) = 1l £ B x
#0(Cix) = =g 3o Nla W@ [T Fenm e we

moving the integration line to the left-hand side one gets:

o |
e o
All other zeros produce
e o an explicit term of size
° L
., . o 1 , _ xlogx which is indepen-
T dent of the discriminant.
°
e o

|G| x2 xPt1 ,
|Clw(l)(c X) = —;e(p)m—xrc—i-rc—i—f?c(x).

An effective Chebotarev theorem under GRH
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Some tools: positive coefficients

Since p(V(C; x) = Y ong<x(x = N3)O(C; T)Ak (T) and 6(C; T) is nonnegative, one has

G(C;x) < [WI(C;x+ h) —vWD(C;x)]/h  as h>0,
P(Cix) > [WM(C;x + h) — M (C;x)]/h as —x < h < 0.

So, we can recover bounds for 1(C; x) from analogous bounds for (1) (C; x). This is a
good idea since the results for 1/)(1)(C; X) are stronger.
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Some tools: positive coefficients

Since p(V(C; x) = Y ong<x(x = N3)O(C; T)Ak (T) and 6(C; T) is nonnegative, one has

G(C;x) < [WI(C;x+ h) —vWD(C;x)]/h  as h>0,
P(Cix) > [WM(C;x + h) — M (C;x)]/h as —x < h < 0.

So, we can recover bounds for 1(C; x) from analogous bounds for (1) (C; x). This is a
good idea since the results for 1/)(1)(C; X) are stronger.

This approach needs bounds for several “non-trivial” objects. For example

h)p+1 _ Xp+l ‘

(At h)Pt = xP
| zp: <o) hp(p +1)

(p's are the non trivial zeros for ¢,) which is split as

1_ 1_ 1 1
< 5[] 3 [LEN ot |t S

=T =T hp(p +1) T hp(p +1)
Vx o |h| x3/2 1
<> S 1+ (25 o) D
=T Pl VX, 1Al s 1Pl

and we have developed some tools producing goods bounds.
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An intermediate result

The strategy produces the following intermediate result.
Theorem (Grenié-M.) (GRH) Let x > 4 and T > 2 then:

|C|'L/J(C x) —x| < \/_[F(x T)log Ar, + G(x, T)ny, + H(x, T)]

Fx,T) = 1Iog(277;)+--~, G(X,T):%Iog2(£>+...,

Hex Ty =Y 4o

%
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An intermediate result

The strategy produces the following intermediate result.
Theorem (Grenié-M.) (GRH) Let x > 4 and T > 2 then:

%d)(C: x) — x| < v/x [F(x, T)log AL + G(x, T)ny, + H(x, T)]
F(X,T):%log(%)-k...’ G(X,T):%Iog2(%>+...’
_Vvx
H(x, T)—T-i- .

Setting T =¥, /x (well, actually a lot of computations need here, to control the
secondary terms which depend on K, L, G and the class C) we reach a result similar
to but for ¢(C;x) (hence using 6(C), which is a smoothed version of the
characteristic function for C), which is related to ¥ ¢(x) (hence using the characteristic
function of C) by

P(C; x) = c(x) + ramification term.
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An intermediate result

The strategy produces the following intermediate result.
Theorem (Grenié-M.) (GRH) Let x > 4 and T > 27 then:

%d)(C: x) — x| < v/x [F(x, T)log AL + G(x, T)ny, + H(x, T)]
F(X,T):%log(%)-k...’ G(X,T):%Iogz(%)_k...’
_Vx L
H(x, T)—T-i- .

Setting T =¥, /x (well, actually a lot of computations need here, to control the
secondary terms which depend on K, L, G and the class C) we reach a result similar
to but for ¢(C;x) (hence using 6(C), which is a smoothed version of the
characteristic function for C), which is related to ¥ ¢(x) (hence using the characteristic
function of C) by

P(C; x) = c(x) + ramification term.

The ramification term is positive, hence the upper bound for ¢)(C; x) implies the same
upper bound for 1 ¢c(x). For lower bounds some difficult tricks are need, in order to
reach the same conclusion for 1¢(x) and for ¥(C; x).
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The ramifications term

|C

ramification term < min (—', l)nKn log x
p
where p is the smallest prime divisor of |G|, and n := i ZP\AL/K 1

tog(a;/"™) ,
# for all fields but L = Q[£+v/3], Q[++/15],

1/m
log(a;/ ™)

log 49 if m =3,

Iog(A]i/ K )

Tog 53 if |G| is not a prime (with 25 exceptions),

Iog(Al/n]K)

; 1/ng 1.1714
if log(A > e .
log Iog(A]i/"K)—l‘NM g( L )

The last bound is a generalization of Robin's result

w(n) = Z 1< log n

o ~ loglogn—1.1714
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Consequences

By partial summation:
Theorem (Grenié-M.) (GRH) For x > 2

X
e~ gl = VA (G + ) s (57 4 4 g)m)
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Consequences

By partial summation:
Theorem (Grenié-M.) (GRH) For x > 2

‘|C|Tr <l )_/: |°gU‘ - (( Iogx)IOgA +(Iog7rx+%+lon)"‘L)'

The bounds coming from the estimations for ¢)(C; x) prove that there is a prime ideal
with a given Frobenius and a norm bounded by (0.1 + o(1))(log Ar,)?(log log Ap,)*.
Using 9 (C; x) we can remove the double log term.

Theorem (Grenié-M.) (GRH) Let k > 1. Then mwc(x) > k when

k+5 2
> 1. _— .
x> 1.16( log Ar + ( : )iG| +15)
Under the same hypotheses Bach proved that m¢(x) > 1 when
X > 1(Iog Ap + const.)z,

but its argument deals only k = 1.
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Thanks you for your attention
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