Arithmetic random waves and lattice points on spheres

Riccardo W. Maffucci
King's College London/University of Oxford
2nd number theory meeting - Torino
October 2017

Nodal surface of toral Laplace eigenfunctions

$\mathbb{T}^{3}=\mathbb{R}^{3} / \mathbb{Z}^{3}: 3 \mathrm{D}$ flat torus.
$G: \mathbb{T}^{3} \rightarrow \mathbb{R}$. Nodal set:

$$
\left\{x \in \mathbb{T}^{3}: G(x)=0\right\} .
$$

\rightarrow stationary during membrane vibrations.

Study: nodal set of Laplace eigenfunctions G,

eigenvalue ('energy') $E>0$, high energy limit $E \rightarrow \infty$.

Nodal surface of toral Laplace eigenfunctions

$\mathbb{T}^{3}=\mathbb{R}^{3} / \mathbb{Z}^{3}: 3 \mathrm{D}$ flat torus.
$G: \mathbb{T}^{3} \rightarrow \mathbb{R}$. Nodal set:

$$
\left\{x \in \mathbb{T}^{3}: G(x)=0\right\} .
$$

\rightarrow stationary during membrane vibrations.

Study: nodal set of Laplace eigenfunctions G,

$$
(\Delta+E) G=0,
$$

eigenvalue ('energy') $E>0$, high energy limit $E \rightarrow \infty$.

Examples of nodal surfaces

Figure: Nodal sets of

$$
\begin{aligned}
& G\left(x_{1}, x_{2}, x_{3}\right)=\cos \left[2 \pi\left(2 x_{1}+3 x_{2}+x_{3}\right)\right]+2 \sin \left[2 \pi\left(x_{1}+3 x_{2}+2 x_{3}\right)\right] ; \\
& G\left(x_{1}, x_{2}, x_{3}\right)=\cos \left[2 \pi\left(2 x_{1}+3 x_{2}+x_{3}\right)\right]+2 \sin \left[2 \pi\left(x_{1}+3 x_{2}+2 x_{3}\right)\right]+7 \cos \left[2 \pi\left(3 x_{1}-2 x_{2}+x_{3}\right)\right] .
\end{aligned}
$$

Energy

Examples of nodal surfaces

Figure: Nodal sets of
$G\left(x_{1}, x_{2}, x_{3}\right)=\cos \left[2 \pi\left(2 x_{1}+3 x_{2}+x_{3}\right)\right]+2 \sin \left[2 \pi\left(x_{1}+3 x_{2}+2 x_{3}\right)\right] ;$
$G\left(x_{1}, x_{2}, x_{3}\right)=\cos \left[2 \pi\left(2 x_{1}+3 x_{2}+x_{3}\right)\right]+2 \sin \left[2 \pi\left(x_{1}+3 x_{2}+2 x_{3}\right)\right]+7 \cos \left[2 \pi\left(3 x_{1}-2 x_{2}+x_{3}\right)\right]$.

Energy $E=4 \pi^{2}\left(1^{2}+2^{2}+3^{2}\right)$.

Lattice points on spheres

Energy $E=4 \pi^{2} m$. Set of lattice points on sphere $\sqrt{m} \mathcal{S}^{2}$:

$$
\Lambda_{m}=\left\{\mu \in \mathbb{Z}^{3}:\|\mu\|^{2}=m\right\} ; \quad \mathcal{N}_{m}:=\left|\Lambda_{m}\right|=r_{3}(m) .
$$

Figure: $m=866, \mathcal{N}=528$;

$m=146849, \mathcal{N}=7392$.

The number of lattice points

$$
\begin{aligned}
& m=\square+\square+\square \Longleftrightarrow m \neq 4^{l}(8 k+7), \text { and } \\
& \mathcal{E}(4 m)=\{2 \mu: \mu \in \mathcal{E}(m)\} \text { و take } m \not \equiv 0,4,7(\bmod 8) .
\end{aligned}
$$

Fix $R:=\sqrt{m}$. Denote $\kappa(R)$ the maximal number of lattice points in intersection of sphere $R \mathcal{S}^{2} \subset \mathbb{R}^{3}$ and plane Π :

$$
\kappa(R)=\max _{\Pi}\left|\left\{\mu \in \mathbb{Z}^{3}: \mu \in R \mathcal{S}^{2} \cap \Pi\right\}\right|
$$

Jarnik:

The number of lattice points

$$
m=\square+\square+\square \Longleftrightarrow m \neq 4^{l}(8 k+7) \text {, and }
$$

$\mathcal{E}(4 m)=\{2 \mu: \mu \in \mathcal{E}(m)\} \rightarrow$ take $m \not \equiv 0,4,7(\bmod 8)$.

$$
(\sqrt{m})^{1-\epsilon} \ll \mathcal{N} \ll(\sqrt{m})^{1+\epsilon}, \quad \forall \epsilon>0 .
$$

Fix $R:=\sqrt{m}$. Denote $\kappa(R)$ the maximal number of lattice points in intersection of sphere $R \mathcal{S}^{2} \subset \mathbb{R}^{3}$ and plane Π :

$$
\kappa(R)=\max _{\Pi}\left|\left\{\mu \in \mathbb{Z}^{3}: \mu \in R \mathcal{S}^{2} \cap \Pi\right\}\right| .
$$

Jarnik:

$$
\kappa(R) \ll R^{\epsilon}, \quad \forall \epsilon>0 .
$$

Nodal intersections

Number of nodal intersections with \mathcal{C} of fixed length, $\mathcal{Z}(G):=\left|\left\{x \in \mathbb{T}^{3}: G(x)=0\right\} \cap \mathcal{C}\right|$, as $E \rightarrow+\infty$.

Figure: Nodal set of $G\left(x_{1}, x_{2}, x_{3}\right)=\cos \left[2 \pi\left(2 x_{1}+3 x_{2}+\right.\right.$ $\left.\left.x_{3}\right)\right]+2 \sin \left[2 \pi\left(x_{1}+3 x_{2}+2 x_{3}\right)\right]$ intersected with line of endpoints the origin and $(0.3,0.2, \sqrt{3} / 3)$.

[^0]
Nodal intersections

Number of nodal intersections with \mathcal{C} of fixed length, $\mathcal{Z}(G):=\left|\left\{x \in \mathbb{T}^{3}: G(x)=0\right\} \cap \mathcal{C}\right|$, as $E \rightarrow+\infty$.

Figure: Nodal set of $G\left(x_{1}, x_{2}, x_{3}\right)=\cos \left[2 \pi\left(2 x_{1}+3 x_{2}+\right.\right.$ $\left.\left.x_{3}\right)\right]+2 \sin \left[2 \pi\left(x_{1}+3 x_{2}+2 x_{3}\right)\right]$ intersected with line of endpoints the origin and $(0.3,0.2, \sqrt{3} / 3)$.

There exist sequences of eigenfunctions G and curves \mathcal{C}, where $\mathcal{C} \subset$ nodal set, and planar curves with no nodal intersections at all, m arbitrarily large.

Arithmetic random waves

Laplace eigenvalues $\left\{E=4 \pi^{2} m\right\}$, m is sum of 3 squares. $\Lambda_{m}=\left\{\mu \in \mathbb{Z}^{3}:\|\mu\|^{2}=m\right\}$: lattice points on sphere $\sqrt{m} \mathcal{S}^{2}$. $\mathcal{N}=\left|\Lambda_{m}\right|=r_{3}(m)$.
Eigenspace: basis $\left\{e^{2 \pi i\langle\mu, x\rangle}\right\}_{\mu \in \Lambda_{m}}$, dimension \mathcal{N}.

Eigenvalue multiplicities \rightsquigarrow random Gaussian Laplace toral

 eigenfunctions ('arithmetic random waves'):
a_{μ} : i.i.d. complex std. Gaussian random variables $\left(a_{-\mu}=\overline{a_{\mu}}\right)$.

Arithmetic random waves

Laplace eigenvalues $\left\{E=4 \pi^{2} m\right\}$, m is sum of 3 squares. $\Lambda_{m}=\left\{\mu \in \mathbb{Z}^{3}:\|\mu\|^{2}=m\right\}$: lattice points on sphere $\sqrt{m} \mathcal{S}^{2}$. $\mathcal{N}=\left|\Lambda_{m}\right|=r_{3}(m)$.
Eigenspace: basis $\left\{e^{2 \pi i\langle\mu, x\rangle}\right\}_{\mu \in \Lambda_{m}}$, dimension \mathcal{N}.
Eigenvalue multiplicities \rightsquigarrow random Gaussian Laplace toral eigenfunctions ('arithmetic random waves'):

$$
F_{m}(x)=\frac{1}{\sqrt{\mathcal{N}}} \sum_{\mu \in \Lambda_{m}} a_{\mu} e^{2 \pi i\langle\mu, x\rangle} .
$$

a_{μ} : i.i.d. complex std. Gaussian random variables $\left(a_{-\mu}=\overline{a_{\mu}}\right)$.

Rudnick-Wigman-Yesha

Statistics of nodal intersections $\mathcal{Z}(F)=\left|\left\{x \in \mathbb{T}^{3}: F(x)=0\right\} \cap \mathcal{C}\right|$.

- For smooth curves \mathcal{C} of length L on the torus:

$$
\mathbb{E}[\mathcal{Z}]=L \frac{2}{\sqrt{3}} \cdot \sqrt{m} .
$$

- For \mathcal{C} of nowhere-zero curvature, as $m \rightarrow \infty, m \not \equiv 0,4,7 \bmod 8$,

where $\delta=1 / 3$ if \mathcal{C} of nowhere 0 torsion; any $\delta<1 / 4$ if \mathcal{C} is planar. $\rightsquigarrow \mathcal{Z} / \sqrt{m}$ concentrates around its mean.

Rudnick-Wigman-Yesha

Statistics of nodal intersections $\mathcal{Z}(F)=\left|\left\{x \in \mathbb{T}^{3}: F(x)=0\right\} \cap \mathcal{C}\right|$.

- For smooth curves \mathcal{C} of length L on the torus:

$$
\mathbb{E}[\mathcal{Z}]=L \frac{2}{\sqrt{3}} \cdot \sqrt{m} .
$$

- For \mathcal{C} of nowhere-zero curvature, as $m \rightarrow \infty, m \not \equiv 0,4,7 \bmod 8$,

$$
\operatorname{Var}\left(\frac{\mathcal{Z}}{\sqrt{m}}\right) \ll \frac{1}{m^{\delta}}
$$

where $\delta=1 / 3$ if \mathcal{C} of nowhere 0 torsion; any $\delta<1 / 4$ if \mathcal{C} is planar. $\rightsquigarrow \mathcal{Z} / \sqrt{m}$ concentrates around its mean.

Rational line segments

Nodal intersections number $\mathcal{Z}(F)=|\{x: F(x)=0\} \cap \mathcal{C}|$ for arithmetic random waves F, against a straight line.

Rational line segments

Nodal intersections number $\mathcal{Z}(F)=|\{x: F(x)=0\} \cap \mathcal{C}|$ for arithmetic random waves F, against a straight line.

Theorem 1 (M.)

Assume the segment \mathcal{C}, of length L, is rational i.e., it is parametrised by $\gamma(t)=t\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$, with $\alpha_{2} / \alpha_{1} \in \mathbb{Q}$ and $\alpha_{3} / \alpha_{1} \in \mathbb{Q}$. Then

$$
\operatorname{Var}\left(\frac{\mathcal{Z}}{\sqrt{m}}\right) \ll \frac{\kappa(\sqrt{m})}{\mathcal{N}}
$$

Irrational line segments

Theorem 2 (M.)

Irrational line $\mathcal{C} \subset \mathbb{T}^{3}: \gamma(t)=t\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ s.t. $\frac{\alpha_{2}}{\alpha_{1}}, \frac{\alpha_{3}}{\alpha_{1}} \in \mathbb{R} \backslash \mathbb{Q}$. If $m \not \equiv 0,4,7(\bmod 8)$, then for every $\epsilon>0$,

$$
\operatorname{Var}\left(\frac{\mathcal{Z}}{\sqrt{m}}\right) \ll \frac{1}{m^{1 / 7-\epsilon}} .
$$

Theorem 3 (M.)

Irrational line $\mathcal{C} \subset \mathbb{T}^{3}: \gamma(t)=t\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ s.t. $\frac{\alpha_{2}}{\alpha_{1}} \in \mathbb{Q}$ and $\frac{\alpha_{3}}{\alpha_{1}} \in \mathbb{R} \backslash \mathbb{Q}$. If $m \not \equiv 0,4,7(\bmod 8)$, then for every $\epsilon>0$,

$$
\operatorname{Var}\left(\frac{\mathcal{Z}}{\sqrt{m}}\right) \ll \frac{1}{m^{1 / 5-\epsilon}} .
$$

A conjecture of Bourgain and Rudnick

Conjecture 1: the maximal number of lattice points $\chi(R, s)$ in a radius s cap of $R \mathcal{S}^{2}$ satisfies, as $R \rightarrow \infty, \forall \epsilon>0$ and $s<R^{1-\delta}$:

$$
\chi(R, s) \ll R^{\epsilon}\left(1+\frac{s^{2}}{R}\right) .
$$

\rightarrow Proven for exponent $R^{1 / 2}$.

A conjecture of Bourgain and Rudnick

Conjecture 1: the maximal number of lattice points $\chi(R, s)$ in a radius s cap of $R \mathcal{S}^{2}$ satisfies, as $R \rightarrow \infty, \forall \epsilon>0$ and $s<R^{1-\delta}$:

$$
\chi(R, s) \ll R^{\epsilon}\left(1+\frac{s^{2}}{R}\right) .
$$

\rightarrow Proven for exponent $R^{1 / 2}$.

Conditional result

Theorem 4 (M.)

Assume Conjecture 1. Let $m \not \equiv 0,4,7(\bmod 8)$ and \mathcal{C} be a straight line segment on \mathbb{T}^{3}. Then we have for all $\epsilon>0$

$$
\operatorname{Var}\left(\frac{\mathcal{Z}}{\sqrt{m}}\right) \ll \frac{1}{m^{1 / 4-\epsilon}}
$$

Spherical segments

Figure: spherical cap;

spherical segment.

Lattice points in spherical segments/1

Proposition 5 (M.)

In a sph. segment $S \subset R \mathcal{S}^{2}$ of angle θ, large base radius k, and direction β, s.t. $\frac{\beta_{2}}{\beta_{1}}, \frac{\beta_{3}}{\beta_{1}} \in \mathbb{R} \backslash \mathbb{Q}$, the lattice point number ψ satisfies

$$
\psi \ll \kappa(R)\left(1+R \cdot \theta^{1 / 3}\right)
$$

for $\theta \rightarrow 0$.

Idea of proof: bound ψ for 'rational' sph. segments, then use Diophantine approximation.

Lattice points in spherical segments/1

Proposition 5 (M.)

In a sph. segment $S \subset R \mathcal{S}^{2}$ of angle θ, large base radius k, and direction β, s.t. $\frac{\beta_{2}}{\beta_{1}}, \frac{\beta_{3}}{\beta_{1}} \in \mathbb{R} \backslash \mathbb{Q}$, the lattice point number ψ satisfies

$$
\psi \ll \kappa(R)\left(1+R \cdot \theta^{1 / 3}\right)
$$

for $\theta \rightarrow 0$.

Idea of proof: bound ψ for 'rational' sph. segments, then use Diophantine approximation.

Simultaneous Diophantine approximation

Theorem 6 (Dirichlet)

Given $\zeta_{1}, \zeta_{2} \in \mathbb{R} \backslash \mathbb{Q}$ and an integer $H \geq 1$, there exist $q, p_{1}, p_{2} \in \mathbb{Z}$ s.t. $1 \leq q \leq H^{2}$ and

$$
\left|\zeta_{1}-\frac{p_{1}}{q}\right|,\left|\zeta_{2}-\frac{p_{2}}{q}\right|<\frac{1}{q H} .
$$

\rightarrow If the line $\mathcal{C}: \gamma(t)=t \alpha$ satisfies $\alpha_{2} / \alpha_{1} \in \mathbb{Q}$, we get a better

 bound, as we approximate one irrational only.
Simultaneous Diophantine approximation

Theorem 6 (Dirichlet)

Given $\zeta_{1}, \zeta_{2} \in \mathbb{R} \backslash \mathbb{Q}$ and an integer $H \geq 1$, there exist $q, p_{1}, p_{2} \in \mathbb{Z}$ s.t. $1 \leq q \leq H^{2}$ and

$$
\left|\zeta_{1}-\frac{p_{1}}{q}\right|,\left|\zeta_{2}-\frac{p_{2}}{q}\right|<\frac{1}{q H} .
$$

\rightarrow If the line $\mathcal{C}: \gamma(t)=t \alpha$ satisfies $\alpha_{2} / \alpha_{1} \in \mathbb{Q}$, we get a better bound, as we approximate one irrational only.

Lattice points in spherical segments/2

Recall: $\chi(R, s)=$ max. number of lattice points in cap of radius s.

Proposition 7 (M.)

In a sph. segment $S \subset R \mathcal{S}^{2}$ of angle θ and large base radius k, the lattice point number ψ satisfies, for every real number $0<\Omega<R$,

$$
\psi \leq \chi(R,(2 \pi+1 / 2) \Omega) \cdot\left\lceil\frac{k}{\Omega}\right\rceil \cdot\left\lceil\frac{R \theta}{\Omega}\right\rceil
$$

Idea of proof: cover the segment with spherical caps.

圊 Jean Bourgain and Zeév Rudnick.
Restriction of toral eigenfunctions to hypersurfaces and nodal sets.
Geom. Funct. Anal., 22(4):878-937, 2012.
R Riccardo W Maffucci.
Nodal intersections for random waves against a segment on the 3-dimensional torus.
Journal of Functional Analysis, 272(12):5218-5254, 2017.
Reév Rudnick, Igor Wigman, and Nadav Yesha.
Nodal intersections for random waves on the 3-dimensional torus.
Ann. Inst. Fourier (Grenoble), 66(6):2455-2484, 2016.

[^0]: There exist sequences of eigenfunctions G and curves \mathcal{C}, where $\mathcal{C} \subset$ nodal set, and planar curves with no nodal intersections at all, m arbitrarily large.

