Our model and prior work	About the proofs

Arithmetic random waves and lattice points on spheres

Riccardo W. Maffucci

King's College London/University of Oxford

2nd number theory meeting - Torino October 2017

Introduction ●0000	Our model and prior work		About the proofs
Nodal s	surface of toral La	place eigenfu	Inctions

 $\mathbb{T}^3 = \mathbb{R}^3 / \mathbb{Z}^3$: 3D flat torus. $G : \mathbb{T}^3 \to \mathbb{R}$. Nodal set:

$$\{x \in \mathbb{T}^3 : G(x) = 0\}.$$

\hookrightarrow stationary during membrane vibrations.

Study: nodal set of Laplace eigenfunctions G,

$$(\Delta + E)G = 0,$$

eigenvalue ('energy') E > 0, high energy limit $E \to \infty$.

Introduction $\bullet 0000$	Our model and prior wo 00		About the proofs 0000
Nodal	surface of toral L	aplace eigenf	unctions

 $\mathbb{T}^3 = \mathbb{R}^3 / \mathbb{Z}^3$: 3D flat torus. $G : \mathbb{T}^3 \to \mathbb{R}$. Nodal set:

$$\{x \in \mathbb{T}^3 : G(x) = 0\}.$$

 \hookrightarrow stationary during membrane vibrations.

Study: nodal set of Laplace eigenfunctions G,

$$(\Delta + E)G = 0,$$

eigenvalue ('energy') E > 0, high energy limit $E \to \infty$.

Introduction $0 \bullet 000$	Our model and prior work oo	About the proofs 0000

Examples of nodal surfaces

Figure: Nodal sets of $G(x_1, x_2, x_3) = \cos[2\pi(2x_1 + 3x_2 + x_3)] + 2\sin[2\pi(x_1 + 3x_2 + 2x_3)];$ $G(x_1, x_2, x_3) = \cos[2\pi(2x_1 + 3x_2 + x_3)] + 2\sin[2\pi(x_1 + 3x_2 + 2x_3)] + 7\cos[2\pi(3x_1 - 2x_2 + x_3)].$

Energy $E = 4\pi^2(1^2 + 2^2 + 3^2).$

Introduction $0 \bullet 000$	Our model and prior work oo	About the proofs 0000

Examples of nodal surfaces

Figure: Nodal sets of $G(x_1, x_2, x_3) = \cos[2\pi(2x_1 + 3x_2 + x_3)] + 2\sin[2\pi(x_1 + 3x_2 + 2x_3)];$ $G(x_1, x_2, x_3) = \cos[2\pi(2x_1 + 3x_2 + x_3)] + 2\sin[2\pi(x_1 + 3x_2 + 2x_3)] + 7\cos[2\pi(3x_1 - 2x_2 + x_3)].$

Energy
$$E = 4\pi^2 (1^2 + 2^2 + 3^2).$$

Figure: m = 866, N = 528;

$$m = 146849, \mathcal{N} = 7392.$$

Introduction 00000	Our model and prior work oo	About the proofs 0000
The number	• of lattice points	

 $\begin{array}{l} m = \Box + \Box + \Box \iff m \neq 4^{l}(8k+7), \text{ and} \\ \mathcal{E}(4m) = \{2\mu : \mu \in \mathcal{E}(m)\} \Leftrightarrow \text{ take } m \not\equiv 0, 4, 7 \pmod{8}. \end{array}$

 $(\sqrt{m})^{1-\epsilon} \ll \mathcal{N} \ll (\sqrt{m})^{1+\epsilon}, \qquad \forall \epsilon > 0.$

Fix $R := \sqrt{m}$. Denote $\kappa(R)$ the maximal number of lattice points in intersection of sphere $RS^2 \subset \mathbb{R}^3$ and plane Π :

$$\kappa(R) = \max_{\Pi} \left| \{ \mu \in \mathbb{Z}^3 : \mu \in RS^2 \cap \Pi \} \right|.$$

Jarnik:

 $\kappa(R) \ll R^{\epsilon}, \qquad \forall \epsilon > 0.$

Introduction 00000	Our model and prior work oo	About the proofs
The number	of lattice points	

 $m = \Box + \Box + \Box \iff m \neq 4^{l}(8k + 7), \text{ and}$ $\mathcal{E}(4m) = \{2\mu : \mu \in \mathcal{E}(m)\} \Leftrightarrow \text{ take } m \not\equiv 0, 4, 7 \pmod{8}.$

 $(\sqrt{m})^{1-\epsilon} \ll \mathcal{N} \ll (\sqrt{m})^{1+\epsilon}, \qquad \forall \epsilon > 0.$

Fix $R := \sqrt{m}$. Denote $\kappa(R)$ the maximal number of lattice points in intersection of sphere $RS^2 \subset \mathbb{R}^3$ and plane Π :

$$\kappa(R) = \max_{\Pi} \left| \{ \mu \in \mathbb{Z}^3 : \mu \in RS^2 \cap \Pi \} \right|.$$

Jarnik:

$$\kappa(R) \ll R^{\epsilon}, \qquad \forall \epsilon > 0.$$

Introduction	Our model and prior work	About the proofs
0000●	00	0000
Nodal int	ersections	

Number of **nodal intersections** with C of fixed length, $\mathcal{Z}(G) := |\{x \in \mathbb{T}^3 : G(x) = 0\} \cap C|, \text{ as } E \to +\infty.$

Figure: Nodal set of $G(x_1, x_2, x_3) = \cos[2\pi(2x_1 + 3x_2 + x_3)] + 2\sin[2\pi(x_1 + 3x_2 + 2x_3)]$ intersected with line of endpoints the origin and $(0.3, 0.2, \sqrt{3}/3)$.

There exist sequences of eigenfunctions G and curves C, where $C \subset$ nodal set, and planar curves with no nodal intersections at all, m arbitrarily large.

Introduction	Our model and prior work	About the proofs
0000●	00	0000
Nodal int	ersections	

Number of **nodal intersections** with C of fixed length, $\mathcal{Z}(G) := |\{x \in \mathbb{T}^3 : G(x) = 0\} \cap C|, \text{ as } E \to +\infty.$

Figure: Nodal set of $G(x_1, x_2, x_3) = \cos[2\pi(2x_1 + 3x_2 + x_3)] + 2\sin[2\pi(x_1 + 3x_2 + 2x_3)]$ intersected with line of endpoints the origin and $(0.3, 0.2, \sqrt{3}/3)$.

There exist sequences of eigenfunctions G and curves C, where $C \subset$ nodal set, and planar curves with no nodal intersections at all, m arbitrarily large.

	Our model and ●0	prior work	About the proofs 0000
Arithmetic	random	waves	

Laplace eigenvalues $\{E = 4\pi^2 m\}$, *m* is **sum of** 3 squares. $\Lambda_m = \{\mu \in \mathbb{Z}^3 : ||\mu||^2 = m\}$: **lattice points** on sphere $\sqrt{m}S^2$. $\mathcal{N} = |\Lambda_m| = r_3(m)$.

Eigenspace: basis $\{e^{2\pi i \langle \mu, x \rangle}\}_{\mu \in \Lambda_m}$, dimension \mathcal{N} .

Eigenvalue multiplicities \rightsquigarrow random Gaussian Laplace toral eigenfunctions ('arithmetic random waves'):

$$F_m(x) = \frac{1}{\sqrt{N}} \sum_{\mu \in \Lambda_m} a_{\mu} e^{2\pi i \langle \mu, x \rangle}.$$

 a_{μ} : i.i.d. complex std. Gaussian random variables $(a_{-\mu} = \overline{a_{\mu}})$.

	Our model and ●0	prior work	About the proofs 0000
Arithmetic	random	waves	

Laplace eigenvalues $\{E = 4\pi^2 m\}$, *m* is **sum of** 3 squares. $\Lambda_m = \{\mu \in \mathbb{Z}^3 : ||\mu||^2 = m\}$: **lattice points** on sphere $\sqrt{m}S^2$. $\mathcal{N} = |\Lambda_m| = r_3(m)$.

Eigenspace: basis $\{e^{2\pi i \langle \mu, x \rangle}\}_{\mu \in \Lambda_m}$, dimension \mathcal{N} .

Eigenvalue multiplicities \rightsquigarrow random Gaussian Laplace toral eigenfunctions ('arithmetic random waves'):

$$F_m(x) = \frac{1}{\sqrt{\mathcal{N}}} \sum_{\mu \in \Lambda_m} a_{\mu} e^{2\pi i \langle \mu, x \rangle}.$$

 a_{μ} : i.i.d. complex std. Gaussian random variables $(a_{-\mu} = \overline{a_{\mu}})$.

	Our model and prior work $\circ \bullet$	About the proofs
Rudnick-	Wigman-Yesha	

Statistics of nodal intersections $\mathcal{Z}(F) = |\{x \in \mathbb{T}^3 : F(x) = 0\} \cap \mathcal{C}|.$

• For smooth curves \mathcal{C} of length L on the torus:

$$\mathbb{E}[\mathcal{Z}] = L\frac{2}{\sqrt{3}} \cdot \sqrt{m}.$$

• For \mathcal{C} of <u>nowhere-zero curvature</u>, as $m \to \infty$, $m \not\equiv 0, 4, 7 \mod 8$,

$$\operatorname{Var}\left(\frac{\mathcal{Z}}{\sqrt{m}}\right) \ll \frac{1}{m^{\delta}}$$

where $\delta = 1/3$ if C of nowhere 0 torsion; any $\delta < 1/4$ if C is planar. $\Rightarrow Z/\sqrt{m}$ concentrates around its mean.

ARW's and lattice points

Our model and prior work

	Our model and prior work $\circ \bullet$	About the proofs 0000
Rudnick-	Wigman-Yesha	

Statistics of nodal intersections $\mathcal{Z}(F) = |\{x \in \mathbb{T}^3 : F(x) = 0\} \cap \mathcal{C}|.$

• For smooth curves C of length L on the torus:

$$\mathbb{E}[\mathcal{Z}] = L\frac{2}{\sqrt{3}} \cdot \sqrt{m}.$$

• For \mathcal{C} of <u>nowhere-zero curvature</u>, as $m \to \infty, m \not\equiv 0, 4, 7 \mod 8$,

$$\operatorname{Var}\left(\frac{\mathcal{Z}}{\sqrt{m}}\right) \ll \frac{1}{m^{\delta}}$$

where $\delta = 1/3$ if C of nowhere 0 torsion; any $\delta < 1/4$ if C is planar. $\rightarrow Z/\sqrt{m}$ concentrates around its mean.

	Our model and prior work 00	Results ●000	About the proofs 0000
Rational lin	e segments		

Nodal intersections number $\mathcal{Z}(F) = |\{x : F(x) = 0\} \cap \mathcal{C}|$ for arithmetic random waves F, against a straight line.

Theorem 1 (M.)

Assume the segment C, of length L, is **rational** *i.e.*, it is parametrised by $\gamma(t) = t(\alpha_1, \alpha_2, \alpha_3)$, with $\alpha_2/\alpha_1 \in \mathbb{Q}$ and $\alpha_3/\alpha_1 \in \mathbb{Q}$. Then

$$Var\left(rac{\mathcal{Z}}{\sqrt{m}}
ight)\llrac{\kappa(\sqrt{m})}{\mathcal{N}}.$$

	Our model and prior work 00	$\begin{array}{c} \text{Results} \\ \bullet 000 \end{array}$	About the proofs 0000
Rational lir	ne segments		

Nodal intersections number $\mathcal{Z}(F) = |\{x : F(x) = 0\} \cap \mathcal{C}|$ for arithmetic random waves F, against a straight line.

Theorem 1 (M.)

Assume the segment C, of length L, is **rational** *i.e.*, it is parametrised by $\gamma(t) = t(\alpha_1, \alpha_2, \alpha_3)$, with $\alpha_2/\alpha_1 \in \mathbb{Q}$ and $\alpha_3/\alpha_1 \in \mathbb{Q}$. Then

$$Var\left(\frac{\mathcal{Z}}{\sqrt{m}}\right) \ll \frac{\kappa(\sqrt{m})}{\mathcal{N}}.$$

	Our model and prior work	Results	About the proofs
	oo	o●oo	0000
Irrational li	ne segments		

Theorem 2 (M.)

Irrational line $\mathcal{C} \subset \mathbb{T}^3$: $\gamma(t) = t(\alpha_1, \alpha_2, \alpha_3)$ s.t. $\frac{\alpha_2}{\alpha_1}, \frac{\alpha_3}{\alpha_1} \in \mathbb{R} \setminus \mathbb{Q}$. If $m \neq 0, 4, 7 \pmod{8}$, then for every $\epsilon > 0$,

$$Var\left(rac{\mathcal{Z}}{\sqrt{m}}
ight) \ll rac{1}{m^{1/7-\epsilon}}.$$

Theorem 3 (M.)

Irrational line $C \subset \mathbb{T}^3$: $\gamma(t) = t(\alpha_1, \alpha_2, \alpha_3)$ s.t. $\frac{\alpha_2}{\alpha_1} \in \mathbb{Q}$ and $\frac{\alpha_3}{\alpha_1} \in \mathbb{R} \setminus \mathbb{Q}$. If $m \neq 0, 4, 7 \pmod{8}$, then for every $\epsilon > 0$,

$$Var\left(\frac{\mathcal{Z}}{\sqrt{m}}\right) \ll \frac{1}{m^{1/5-\epsilon}}$$

10 / 16

Conjecture 1: the maximal number of lattice points $\chi(R, s)$ in a radius s cap of RS^2 satisfies, as $R \to \infty$, $\forall \epsilon > 0$ and $s < R^{1-\delta}$:

$$\chi(R,s) \ll R^{\epsilon} \left(1 + \frac{s^2}{R}\right).$$

 \hookrightarrow Proven for exponent $R^{1/2}$.

Conjecture 1: the maximal number of lattice points $\chi(R, s)$ in a radius s cap of RS^2 satisfies, as $R \to \infty$, $\forall \epsilon > 0$ and $s < R^{1-\delta}$:

$$\chi(R,s) \ll R^{\epsilon} \left(1 + \frac{s^2}{R}\right).$$

 \hookrightarrow Proven for exponent $R^{1/2}$.

	Our model and prior work	Results	About the proofs
	oo	000●	0000
Conditional	result		

Theorem 4 (M.)

Assume Conjecture 1. Let $m \not\equiv 0, 4, 7 \pmod{8}$ and C be a straight line segment on \mathbb{T}^3 . Then we have for all $\epsilon > 0$

$$Var\left(rac{\mathcal{Z}}{\sqrt{m}}
ight) \ll rac{1}{m^{1/4-\epsilon}}.$$

	Our model and prior work 00	About the proofs ●000
Cuborical	gogmonta	

Figure: spherical cap;

spherical segment.

	Our model and prior work 00		About the proofs 0000
Lattice p	oints in spheric	al segments $/1$	

Proposition 5 (M.)

In a sph. segment $S \subset RS^2$ of angle θ , large base radius k, and direction β , s.t. $\frac{\beta_2}{\beta_1}, \frac{\beta_3}{\beta_1} \in \mathbb{R} \setminus \mathbb{Q}$, the lattice point number ψ satisfies

$$\psi \ll \kappa(R) \left(1 + R \cdot \theta^{1/3} \right)$$

for $\theta \to 0$.

Idea of proof: bound ψ for 'rational' sph. segments, then use Diophantine approximation.

14 / 16

	Our model and prior work 00		About the proofs 0000
Lattice p	oints in spheric	al segments $/1$	

Proposition 5 (M.)

In a sph. segment $S \subset RS^2$ of angle θ , large base radius k, and direction β , s.t. $\frac{\beta_2}{\beta_1}, \frac{\beta_3}{\beta_1} \in \mathbb{R} \setminus \mathbb{Q}$, the lattice point number ψ satisfies

$$\psi \ll \kappa(R) \left(1 + R \cdot \theta^{1/3} \right)$$

for $\theta \to 0$.

Idea of proof: bound ψ for 'rational' sph. segments, then use Diophantine approximation.

	Our model and prior work oo	About the proofs 0000
O 1		

Simultaneous Diophantine approximation

Theorem 6 (Dirichlet)

Given $\zeta_1, \zeta_2 \in \mathbb{R} \setminus \mathbb{Q}$ and an integer $H \ge 1$, there exist $q, p_1, p_2 \in \mathbb{Z}$ s.t. $1 \le q \le H^2$ and

$$\left|\zeta_1 - \frac{p_1}{q}\right|, \left|\zeta_2 - \frac{p_2}{q}\right| < \frac{1}{qH}.$$

 \rightarrow If the line $C : \gamma(t) = t\alpha$ satisfies $\alpha_2/\alpha_1 \in \mathbb{Q}$, we get a better bound, as we approximate one irrational only.

	Our model and prior work 00	About the proofs 0000
α · 1		

Simultaneous Diophantine approximation

Theorem 6 (Dirichlet)

Given $\zeta_1, \zeta_2 \in \mathbb{R} \setminus \mathbb{Q}$ and an integer $H \ge 1$, there exist $q, p_1, p_2 \in \mathbb{Z}$ s.t. $1 \le q \le H^2$ and

$$\left|\zeta_1 - \frac{p_1}{q}\right|, \left|\zeta_2 - \frac{p_2}{q}\right| < \frac{1}{qH}.$$

 \hookrightarrow If the line $\mathcal{C} : \gamma(t) = t\alpha$ satisfies $\alpha_2/\alpha_1 \in \mathbb{Q}$, we get a better bound, as we approximate one irrational only.

	Our model and prior work 00		About the proofs 000
Lattice poi	nts in spherical s	egments/2	

Recall: $\chi(R, s) = \max$. number of lattice points in cap of radius s.

Proposition 7 (M.)

In a sph. segment $S \subset RS^2$ of angle θ and large base radius k, the lattice point number ψ satisfies, for every real number $0 < \Omega < R$,

$$\psi \le \chi(R, (2\pi + 1/2)\Omega) \cdot \left\lceil \frac{k}{\Omega} \right\rceil \cdot \left\lceil \frac{R\theta}{\Omega} \right\rceil$$

Idea of proof: cover the segment with spherical caps.

Our model and prior work	About the proofs
	0000

Jean Bourgain and Zeév Rudnick.

Restriction of toral eigenfunctions to hypersurfaces and nodal sets.

Geom. Funct. Anal., 22(4):878–937, 2012.

Riccardo W Maffucci.

Nodal intersections for random waves against a segment on the 3-dimensional torus.

Journal of Functional Analysis, 272(12):5218–5254, 2017.

Zeév Rudnick, Igor Wigman, and Nadav Yesha. Nodal intersections for random waves on the 3-dimensional torus.

Ann. Inst. Fourier (Grenoble), 66(6):2455–2484, 2016.