The G.C.D. of n and the nth Fibonacci number

Paolo Leonetti
(joint work with Carlo Sanna)
Università di Milano "Luigi Bocconi"

2nd Number Theory Meeting, Torino 26/10/2017

F_{n} and n

Let $\left(F_{n}\right)_{n \geq 1}$ be the sequence of Fibonacci numbers, defined as usual by

$$
F_{1}=F_{2}=1 \quad \text { and } \quad F_{n+2}=F_{n+1}+F_{n}
$$

for all $n \geq 1$.

F_{n} and n

Let $\left(F_{n}\right)_{n \geq 1}$ be the sequence of Fibonacci numbers, defined as usual by

$$
F_{1}=F_{2}=1 \quad \text { and } \quad F_{n+2}=F_{n+1}+F_{n}
$$

for all $n \geq 1$. It is well known that F_{n} and n have many arithmetical relations, for example:

F_{n} and n

Let $\left(F_{n}\right)_{n \geq 1}$ be the sequence of Fibonacci numbers, defined as usual by

$$
F_{1}=F_{2}=1 \quad \text { and } \quad F_{n+2}=F_{n+1}+F_{n}
$$

for all $n \geq 1$. It is well known that F_{n} and n have many arithmetical relations, for example:

- $F_{m} \mid F_{n}$ if and only if $m \mid n$.

F_{n} and n

Let $\left(F_{n}\right)_{n \geq 1}$ be the sequence of Fibonacci numbers, defined as usual by

$$
F_{1}=F_{2}=1 \quad \text { and } \quad F_{n+2}=F_{n+1}+F_{n}
$$

for all $n \geq 1$. It is well known that F_{n} and n have many arithmetical relations, for example:

- $F_{m} \mid F_{n}$ if and only if $m \mid n$.
- $\operatorname{gcd}\left(F_{m}, F_{n}\right)=F_{\operatorname{gcd}(m, n)}$.

F_{n} and n

Let $\left(F_{n}\right)_{n \geq 1}$ be the sequence of Fibonacci numbers, defined as usual by

$$
F_{1}=F_{2}=1 \quad \text { and } \quad F_{n+2}=F_{n+1}+F_{n}
$$

for all $n \geq 1$. It is well known that F_{n} and n have many arithmetical relations, for example:

- $F_{m} \mid F_{n}$ if and only if $m \mid n$.
- $\operatorname{gcd}\left(F_{m}, F_{n}\right)=F_{\operatorname{gcd}(m, n)}$.
- $F_{m}^{2} \mid F_{m n}$ if and only if $F_{m} \mid n$.

F_{n} and n

Let $\left(F_{n}\right)_{n \geq 1}$ be the sequence of Fibonacci numbers, defined as usual by

$$
F_{1}=F_{2}=1 \quad \text { and } \quad F_{n+2}=F_{n+1}+F_{n}
$$

for all $n \geq 1$. It is well known that F_{n} and n have many arithmetical relations, for example:

- $F_{m} \mid F_{n}$ if and only if $m \mid n$.
- $\operatorname{gcd}\left(F_{m}, F_{n}\right)=F_{\operatorname{gcd}(m, n)}$.
- $F_{m}^{2} \mid F_{m n}$ if and only if $F_{m} \mid n$.

In particular, the set of positive integers n such that $n \mid F_{n}$ has been studied by Alba González-Luca-Pomerance-Shparlinski, André-Jeannin, Luca-Tron, Somer.

Integers of the form $\operatorname{gcd}\left(n, F_{n}\right)$

Integers of the form $\operatorname{gcd}\left(n, F_{n}\right)$

Let \mathcal{A} be the set of all integers of the form $\operatorname{gcd}\left(n, F_{n}\right)$ for some $n \geq 1$.

Integers of the form $\operatorname{gcd}\left(n, F_{n}\right)$

Let \mathcal{A} be the set of all integers of the form $\operatorname{gcd}\left(n, F_{n}\right)$ for some $n \geq 1$. For example, $10 \in \mathcal{A}$ since $10=\operatorname{gcd}(30,832040)=\operatorname{gcd}\left(30, F_{30}\right)$.

Integers of the form $\operatorname{gcd}\left(n, F_{n}\right)$

Let \mathcal{A} be the set of all integers of the form $\operatorname{gcd}\left(n, F_{n}\right)$ for some $n \geq 1$.
For example, $10 \in \mathcal{A}$ since $10=\operatorname{gcd}(30,832040)=\operatorname{gcd}\left(30, F_{30}\right)$.
The first elements of \mathcal{A} are
$1,2,5,7,10,12,13,17,24,25,26,29,34,35,36, \ldots$

Integers of the form $\operatorname{gcd}\left(n, F_{n}\right)$

Let \mathcal{A} be the set of all integers of the form $\operatorname{gcd}\left(n, F_{n}\right)$ for some $n \geq 1$.
For example, $10 \in \mathcal{A}$ since $10=\operatorname{gcd}(30,832040)=\operatorname{gcd}\left(30, F_{30}\right)$.
The first elements of \mathcal{A} are

```
\(1,2,5,7,10,12,13,17,24,25,26,29,34,35,36, \ldots\)
```

It is not immediately clear how to establish if $n \in \mathcal{A}$.

Integers of the form $\operatorname{gcd}\left(n, F_{n}\right)$

Let \mathcal{A} be the set of all integers of the form $\operatorname{gcd}\left(n, F_{n}\right)$ for some $n \geq 1$.
For example, $10 \in \mathcal{A}$ since $10=\operatorname{gcd}(30,832040)=\operatorname{gcd}\left(30, F_{30}\right)$.
The first elements of \mathcal{A} are
$1,2,5,7,10,12,13,17,24,25,26,29,34,35,36, \ldots$
It is not immediately clear how to establish if $n \in \mathcal{A}$. However, if $z(n)$ denotes the rank of appearance of n,

Integers of the form $\operatorname{gcd}\left(n, F_{n}\right)$

Let \mathcal{A} be the set of all integers of the form $\operatorname{gcd}\left(n, F_{n}\right)$ for some $n \geq 1$.
For example, $10 \in \mathcal{A}$ since $10=\operatorname{gcd}(30,832040)=\operatorname{gcd}\left(30, F_{30}\right)$.
The first elements of \mathcal{A} are

$$
1,2,5,7,10,12,13,17,24,25,26,29,34,35,36, \ldots
$$

It is not immediately clear how to establish if $n \in \mathcal{A}$. However, if $z(n)$ denotes the rank of appearance of n, that is, $z(n)$ is the smallest $k \geq 1$ such that n divides F_{k},

Integers of the form $\operatorname{gcd}\left(n, F_{n}\right)$

Let \mathcal{A} be the set of all integers of the form $\operatorname{gcd}\left(n, F_{n}\right)$ for some $n \geq 1$.
For example, $10 \in \mathcal{A}$ since $10=\operatorname{gcd}(30,832040)=\operatorname{gcd}\left(30, F_{30}\right)$.
The first elements of \mathcal{A} are

```
\(1,2,5,7,10,12,13,17,24,25,26,29,34,35,36, \ldots\)
```

It is not immediately clear how to establish if $n \in \mathcal{A}$. However, if $z(n)$ denotes the rank of appearance of n, that is, $z(n)$ is the smallest $k \geq 1$ such that n divides F_{k}, and if we put $\ell(n):=\operatorname{Icm}(n, z(n))$,

Integers of the form $\operatorname{gcd}\left(n, F_{n}\right)$

Let \mathcal{A} be the set of all integers of the form $\operatorname{gcd}\left(n, F_{n}\right)$ for some $n \geq 1$.
For example, $10 \in \mathcal{A}$ since $10=\operatorname{gcd}(30,832040)=\operatorname{gcd}\left(30, F_{30}\right)$.
The first elements of \mathcal{A} are

```
\(1,2,5,7,10,12,13,17,24,25,26,29,34,35,36, \ldots\)
```

It is not immediately clear how to establish if $n \in \mathcal{A}$. However, if $z(n)$ denotes the rank of appearance of n, that is, $z(n)$ is the smallest $k \geq 1$ such that n divides F_{k}, and if we put $\ell(n):=\operatorname{Icm}(n, z(n))$, then we have:

Lemma

$n \in \mathcal{A}$ if and only if $n=\operatorname{gcd}\left(\ell(n), F_{\ell(n)}\right)$.

How big is \mathcal{A} ?

How big is \mathcal{A} ?

Given a set of positive integers \mathcal{S}, put $\mathcal{S}(x):=\mathcal{S} \cap[1, x]$ for all $x \geq 1$.

How big is \mathcal{A} ?

Given a set of positive integers \mathcal{S}, put $\mathcal{S}(x):=\mathcal{S} \cap[1, x]$ for all $x \geq 1$.
Theorem (L. and Sanna, 2017)
We have

$$
\# \mathcal{A}(x) \gg \frac{x}{\log x}
$$

for all $x \geq 2$,

How big is \mathcal{A} ?

Given a set of positive integers \mathcal{S}, put $\mathcal{S}(x):=\mathcal{S} \cap[1, x]$ for all $x \geq 1$.
Theorem (L. and Sanna, 2017)
We have

$$
\# \mathcal{A}(x) \gg \frac{x}{\log x}
$$

for all $x \geq 2$, while

$$
\# \mathcal{A}(x)=o(x)
$$

as $x \rightarrow+\infty$.

How big is \mathcal{A} ?

Given a set of positive integers \mathcal{S}, put $\mathcal{S}(x):=\mathcal{S} \cap[1, x]$ for all $x \geq 1$.
Theorem (L. and Sanna, 2017)
We have

$$
\# \mathcal{A}(x) \gg \frac{x}{\log x}
$$

for all $x \geq 2$, while

$$
\# \mathcal{A}(x)=o(x)
$$

as $x \rightarrow+\infty$.

Let us see a brief sketch of the proof...

Divisibility properties of $z(p)$

Divisibility properties of $z(p)$

For each positive integer m, let

$$
Z(m):=\lim _{x \rightarrow+\infty} \frac{\#\{p \leq x: m \mid z(p)\}}{x / \log x}
$$

where p is a prime number.

Divisibility properties of $z(p)$

For each positive integer m, let

$$
Z(m):=\lim _{x \rightarrow+\infty} \frac{\#\{p \leq x: m \mid z(p)\}}{x / \log x}
$$

where p is a prime number.
Theorem (Cubre and Rouse 2014)
We have

$$
Z(m)=r(m) \prod_{q^{e} \| m} \frac{q^{2-e}}{q^{2}-1},
$$

where q^{e} runs over the prime powers in the factorization of m,

Divisibility properties of $z(p)$

For each positive integer m, let

$$
Z(m):=\lim _{x \rightarrow+\infty} \frac{\#\{p \leq x: m \mid z(p)\}}{x / \log x}
$$

where p is a prime number.
Theorem (Cubre and Rouse 2014)
We have

$$
Z(m)=r(m) \prod_{q^{e} \| m} \frac{q^{2-e}}{q^{2}-1},
$$

where q^{e} runs over the prime powers in the factorization of m, while

$$
r(m):= \begin{cases}1 & \text { if } 10 \nmid m \\ 5 / 4 & \text { if } m \equiv 10 \bmod 20 \\ 1 / 2 & \text { if } 20 \mid m\end{cases}
$$

Proof of the lower bound $(1 / 4)$

Proof of the lower bound $(1 / 4)$

The key tool of the proof is the following elementary result:

Proof of the lower bound $(1 / 4)$

The key tool of the proof is the following elementary result:
Lemma
If $p \neq 3$ is a prime such that $\ell(q) \nmid z(p)$ for all primes q, then $p \in \mathcal{A}$.

Proof of the lower bound $(1 / 4)$

The key tool of the proof is the following elementary result:
Lemma
If $p \neq 3$ is a prime such that $\ell(q) \nmid z(p)$ for all primes q, then $p \in \mathcal{A}$.
Let $y>0$ be a real number to be chosen later, and define

Proof of the lower bound (1/4)

The key tool of the proof is the following elementary result:
Lemma
If $p \neq 3$ is a prime such that $\ell(q) \nmid z(p)$ for all primes q, then $p \in \mathcal{A}$.
Let $y>0$ be a real number to be chosen later, and define

$$
\mathcal{P}_{1}:=\{p: q \nmid z(p) \text { for all } q \in[3, y]\} \text {, }
$$

Proof of the lower bound $(1 / 4)$

The key tool of the proof is the following elementary result:
Lemma
If $p \neq 3$ is a prime such that $\ell(q) \nmid z(p)$ for all primes q, then $p \in \mathcal{A}$.
Let $y>0$ be a real number to be chosen later, and define

$$
\begin{aligned}
& \mathcal{P}_{1}:=\{p: q \nmid z(p) \text { for all } q \in[3, y]\}, \\
& \mathcal{P}_{2}:=\{p: \ell(q) \mid z(p) \text { for some } q>y\},
\end{aligned}
$$

Proof of the lower bound $(1 / 4)$

The key tool of the proof is the following elementary result:
Lemma
If $p \neq 3$ is a prime such that $\ell(q) \nmid z(p)$ for all primes q, then $p \in \mathcal{A}$.
Let $y>0$ be a real number to be chosen later, and define

$$
\begin{aligned}
\mathcal{P}_{1} & :=\{p: q \nmid z(p) \text { for all } q \in[3, y]\}, \\
\mathcal{P}_{2} & :=\{p: \ell(q) \mid z(p) \text { for some } q>y\}, \\
\mathcal{P} & :=\mathcal{P}_{1} \backslash \mathcal{P}_{2}
\end{aligned}
$$

Proof of the lower bound $(1 / 4)$

The key tool of the proof is the following elementary result:
Lemma
If $p \neq 3$ is a prime such that $\ell(q) \nmid z(p)$ for all primes q, then $p \in \mathcal{A}$.
Let $y>0$ be a real number to be chosen later, and define

$$
\begin{aligned}
\mathcal{P}_{1} & :=\{p: q \nmid z(p) \text { for all } q \in[3, y]\}, \\
\mathcal{P}_{2} & :=\{p: \ell(q) \mid z(p) \text { for some } q>y\}, \\
\mathcal{P} & :=\mathcal{P}_{1} \backslash \mathcal{P}_{2}
\end{aligned}
$$

Thanks to the previous Lemma, we have $\mathcal{P} \subseteq \mathcal{A} \cup\{3\}$.

Proof of the lower bound $(1 / 4)$

The key tool of the proof is the following elementary result:
Lemma
If $p \neq 3$ is a prime such that $\ell(q) \nmid z(p)$ for all primes q, then $p \in \mathcal{A}$.
Let $y>0$ be a real number to be chosen later, and define

$$
\begin{aligned}
\mathcal{P}_{1} & :=\{p: q \nmid z(p) \text { for all } q \in[3, y]\}, \\
\mathcal{P}_{2} & :=\{p: \ell(q) \mid z(p) \text { for some } q>y\}, \\
\mathcal{P} & :=\mathcal{P}_{1} \backslash \mathcal{P}_{2}
\end{aligned}
$$

Thanks to the previous Lemma, we have $\mathcal{P} \subseteq \mathcal{A} \cup\{3\}$. Hence, it is enough to prove that

$$
\# \mathcal{P}(x) \gg \frac{x}{\log x}
$$

for all $x \geq 2$.

Proof of the lower bound $(2 / 4)$

Let P_{y} be the product of all primes in $[3, y]$,

Proof of the lower bound $(2 / 4)$

Let P_{y} be the product of all primes in $[3, y]$, and let μ be the Möbius function.

Proof of the lower bound $(2 / 4)$

Let P_{y} be the product of all primes in $[3, y]$, and let μ be the Möbius function. By the inclusion-exclusion principle, and by Cubre and Rouse's result, we have

Proof of the lower bound $(2 / 4)$

Let P_{y} be the product of all primes in $[3, y]$, and let μ be the Möbius function. By the inclusion-exclusion principle, and by Cubre and Rouse's result, we have

$$
\lim _{x \rightarrow+\infty} \frac{\# \mathcal{P}_{1}(x)}{x / \log x}=\lim _{x \rightarrow+\infty} \sum_{m \mid P_{y}} \mu(m) \cdot \frac{\#\{p \leq x: m \mid z(p)\}}{x / \log x}
$$

Proof of the lower bound $(2 / 4)$

Let P_{y} be the product of all primes in $[3, y]$, and let μ be the Möbius function. By the inclusion-exclusion principle, and by Cubre and Rouse's result, we have

$$
\begin{aligned}
& \lim _{x \rightarrow+\infty} \frac{\# \mathcal{P}_{1}(x)}{x / \log x}=\lim _{x \rightarrow+\infty} \sum_{m \mid P_{y}} \mu(m) \cdot \frac{\#\{p \leq x: m \mid z(p)\}}{x / \log x} \\
= & \sum_{m \mid P_{y}} \mu(m) Z(m)
\end{aligned}
$$

Proof of the lower bound $(2 / 4)$

Let P_{y} be the product of all primes in $[3, y]$, and let μ be the Möbius function. By the inclusion-exclusion principle, and by Cubre and Rouse's result, we have

$$
\begin{aligned}
& \lim _{x \rightarrow+\infty} \frac{\# \mathcal{P}_{1}(x)}{x / \log x}=\lim _{x \rightarrow+\infty} \sum_{m \mid P_{y}} \mu(m) \cdot \frac{\#\{p \leq x: m \mid z(p)\}}{x / \log x} \\
= & \sum_{m \mid P_{y}} \mu(m) Z(m)=\prod_{3 \leq q \leq y}(1-Z(q))
\end{aligned}
$$

Proof of the lower bound $(2 / 4)$

Let P_{y} be the product of all primes in $[3, y]$, and let μ be the Möbius function. By the inclusion-exclusion principle, and by Cubre and Rouse's result, we have

$$
\begin{aligned}
& \lim _{x \rightarrow+\infty} \frac{\# \mathcal{P}_{1}(x)}{x / \log x}=\lim _{x \rightarrow+\infty} \sum_{m \mid P_{y}} \mu(m) \cdot \frac{\#\{p \leq x: m \mid z(p)\}}{x / \log x} \\
= & \sum_{m \mid P_{y}} \mu(m) Z(m)=\prod_{3 \leq q \leq y}(1-Z(q))=\prod_{3 \leq q \leq y}\left(1-\frac{q}{q^{2}-1}\right) .
\end{aligned}
$$

Proof of the lower bound $(2 / 4)$

Let P_{y} be the product of all primes in $[3, y]$, and let μ be the Möbius function. By the inclusion-exclusion principle, and by Cubre and Rouse's result, we have

$$
\begin{aligned}
& \lim _{x \rightarrow+\infty} \frac{\# \mathcal{P}_{1}(x)}{x / \log x}=\lim _{x \rightarrow+\infty} \sum_{m \mid P_{y}} \mu(m) \cdot \frac{\#\{p \leq x: m \mid z(p)\}}{x / \log x} \\
= & \sum_{m \mid P_{y}} \mu(m) Z(m)=\prod_{3 \leq q \leq y}(1-Z(q))=\prod_{3 \leq q \leq y}\left(1-\frac{q}{q^{2}-1}\right) .
\end{aligned}
$$

Therefore, by Mertens' theorem, we get that

$$
\# \mathcal{P}_{1}(x) \gg \frac{1}{\log y} \cdot \frac{x}{\log x}
$$

for all $x \geq x_{0}(y)$.

Proof of the lower bound $(3 / 4)$

Now, since $z(p) \mid p \pm 1$ for all primes p, we have

Proof of the lower bound $(3 / 4)$

Now, since $z(p) \mid p \pm 1$ for all primes p, we have

$$
\# \mathcal{P}_{2}(x) \leq \sum_{q>y} \#\{p \leq x: \ell(q) \mid z(p)\}
$$

Proof of the lower bound $(3 / 4)$

Now, since $z(p) \mid p \pm 1$ for all primes p, we have

$$
\# \mathcal{P}_{2}(x) \leq \sum_{q>y} \#\{p \leq x: \ell(q) \mid z(p)\} \leq \sum_{q>y} \pi(x, \ell(q), \pm 1)
$$

where $\pi(x, m, a)$ is the number of primes $p \leq x$ such that $p \equiv a \bmod m$.

Proof of the lower bound $(3 / 4)$

Now, since $z(p) \mid p \pm 1$ for all primes p, we have

$$
\# \mathcal{P}_{2}(x) \leq \sum_{q>y} \#\{p \leq x: \ell(q) \mid z(p)\} \leq \sum_{q>y} \pi(x, \ell(q), \pm 1)
$$

where $\pi(x, m, a)$ is the number of primes $p \leq x$ such that $p \equiv \operatorname{arod} m$.
Then, using Brun-Titchmarsh inequality

$$
\pi(x, m, a)<\frac{2 x}{\varphi(m) \log (x / m)}, \quad x>m
$$

where φ is the Euler's totient function,

Proof of the lower bound $(3 / 4)$

Now, since $z(p) \mid p \pm 1$ for all primes p, we have

$$
\# \mathcal{P}_{2}(x) \leq \sum_{q>y} \#\{p \leq x: \ell(q) \mid z(p)\} \leq \sum_{q>y} \pi(x, \ell(q), \pm 1)
$$

where $\pi(x, m, a)$ is the number of primes $p \leq x$ such that $p \equiv \operatorname{arod} m$.
Then, using Brun-Titchmarsh inequality

$$
\pi(x, m, a)<\frac{2 x}{\varphi(m) \log (x / m)}, \quad x>m
$$

where φ is the Euler's totient function, and the technical bound

$$
\sum_{q>y} \frac{1}{\varphi(\ell(q))} \ll \frac{1}{y^{1 / 4}}
$$

Proof of the lower bound $(3 / 4)$

Now, since $z(p) \mid p \pm 1$ for all primes p, we have

$$
\# \mathcal{P}_{2}(x) \leq \sum_{q>y} \#\{p \leq x: \ell(q) \mid z(p)\} \leq \sum_{q>y} \pi(x, \ell(q), \pm 1)
$$

where $\pi(x, m, a)$ is the number of primes $p \leq x$ such that $p \equiv \operatorname{arod} m$.
Then, using Brun-Titchmarsh inequality

$$
\pi(x, m, a)<\frac{2 x}{\varphi(m) \log (x / m)}, \quad x>m
$$

where φ is the Euler's totient function, and the technical bound

$$
\sum_{q>y} \frac{1}{\varphi(\ell(q))} \ll \frac{1}{y^{1 / 4}}
$$

it follows that (we omit several details) ...

Proof of the lower bound (4/4)

$$
\# \mathcal{P}_{2}(x) \ll \frac{1}{y^{1 / 4}} \cdot \frac{x}{\log x}+x^{7 / 8}
$$

Proof of the lower bound (4/4)

$$
\# \mathcal{P}_{2}(x) \ll \frac{1}{y^{1 / 4}} \cdot \frac{x}{\log x}+x^{7 / 8}
$$

In conclusion,

$$
\# \mathcal{P}(x) \geq \# \mathcal{P}_{1}(x)-\# \mathcal{P}_{2}(x)
$$

Proof of the lower bound (4/4)

$$
\# \mathcal{P}_{2}(x) \ll \frac{1}{y^{1 / 4}} \cdot \frac{x}{\log x}+x^{7 / 8}
$$

In conclusion,

$$
\# \mathcal{P}(x) \geq \# \mathcal{P}_{1}(x)-\# \mathcal{P}_{2}(x) \geq\left(\frac{c_{1}}{\log y}-\frac{c_{2}}{y^{1 / 4}}-\frac{c_{2} \log x}{x^{1 / 8}}\right) \cdot \frac{x}{\log x}
$$

for all $x \geq x_{0}(y)$ and some constants $c_{1}, c_{2}>0$.

Proof of the lower bound (4/4)

$$
\# \mathcal{P}_{2}(x) \ll \frac{1}{y^{1 / 4}} \cdot \frac{x}{\log x}+x^{7 / 8}
$$

In conclusion,

$$
\# \mathcal{P}(x) \geq \# \mathcal{P}_{1}(x)-\# \mathcal{P}_{2}(x) \geq\left(\frac{c_{1}}{\log y}-\frac{c_{2}}{y^{1 / 4}}-\frac{c_{2} \log x}{x^{1 / 8}}\right) \cdot \frac{x}{\log x}
$$

for all $x \geq x_{0}(y)$ and some constants $c_{1}, c_{2}>0$.
Hence, picking a sufficiently large y, we get

Proof of the lower bound (4/4)

$$
\# \mathcal{P}_{2}(x) \ll \frac{1}{y^{1 / 4}} \cdot \frac{x}{\log x}+x^{7 / 8}
$$

In conclusion,

$$
\# \mathcal{P}(x) \geq \# \mathcal{P}_{1}(x)-\# \mathcal{P}_{2}(x) \geq\left(\frac{c_{1}}{\log y}-\frac{c_{2}}{y^{1 / 4}}-\frac{c_{2} \log x}{x^{1 / 8}}\right) \cdot \frac{x}{\log x}
$$

for all $x \geq x_{0}(y)$ and some constants $c_{1}, c_{2}>0$.
Hence, picking a sufficiently large y, we get

$$
\# \mathcal{P}(x) \gg \frac{x}{\log x}
$$

as desired. \square

Proof of the upper bound $(1 / 2)$

Proof of the upper bound $(1 / 2)$

We shall use the following result:

Proof of the upper bound $(1 / 2)$

We shall use the following result:

Lemma

If $n \in \mathcal{A}$ and $\ell(q) \mid \ell(n)$ for some prime q, then q divides n.

Proof of the upper bound $(1 / 2)$

We shall use the following result:

Lemma

If $n \in \mathcal{A}$ and $\ell(q) \mid \ell(n)$ for some prime q, then q divides n.
Fix $\varepsilon>0$ and pick a prime q such that $1 / q<\varepsilon / 2$.

Proof of the upper bound $(1 / 2)$

We shall use the following result:

Lemma

If $n \in \mathcal{A}$ and $\ell(q) \mid \ell(n)$ for some prime q, then q divides n.
Fix $\varepsilon>0$ and pick a prime q such that $1 / q<\varepsilon / 2$. Moreover, put

$$
\mathcal{Q}:=\{p: \ell(q) \mid z(p)\}
$$

Proof of the upper bound $(1 / 2)$

We shall use the following result:

Lemma

If $n \in \mathcal{A}$ and $\ell(q) \mid \ell(n)$ for some prime q, then q divides n.
Fix $\varepsilon>0$ and pick a prime q such that $1 / q<\varepsilon / 2$. Moreover, put

$$
\mathcal{Q}:=\{p: \ell(q) \mid z(p)\} .
$$

By Cubre and Rouse's result, we have that \mathcal{Q} has a positive relative density in the set of all primes.

Proof of the upper bound $(1 / 2)$

We shall use the following result:

Lemma

If $n \in \mathcal{A}$ and $\ell(q) \mid \ell(n)$ for some prime q, then q divides n.
Fix $\varepsilon>0$ and pick a prime q such that $1 / q<\varepsilon / 2$. Moreover, put

$$
\mathcal{Q}:=\{p: \ell(q) \mid z(p)\}
$$

By Cubre and Rouse's result, we have that \mathcal{Q} has a positive relative density in the set of all primes. As a consequence, we can pick a sufficiently large $y>0$ so that

$$
\prod_{p \in \mathcal{Q}(y)}\left(1-\frac{1}{p}\right)<\frac{\varepsilon}{2}
$$

Proof of the upper bound $(2 / 2)$

Now we split \mathcal{A} into two subsets:

Proof of the upper bound $(2 / 2)$

Now we split \mathcal{A} into two subsets:

$$
\mathcal{A}_{1}:=\{n \in \mathcal{A}: n \text { has no prime factors in } \mathcal{Q}(y)\}
$$

Proof of the upper bound $(2 / 2)$

Now we split \mathcal{A} into two subsets:

$$
\begin{aligned}
& \mathcal{A}_{1}:=\{n \in \mathcal{A}: n \text { has no prime factors in } \mathcal{Q}(y)\} \\
& \mathcal{A}_{2}:=\mathcal{A} \backslash \mathcal{A}_{1} .
\end{aligned}
$$

Proof of the upper bound $(2 / 2)$

Now we split \mathcal{A} into two subsets:

$$
\begin{aligned}
& \mathcal{A}_{1}:=\{n \in \mathcal{A}: n \text { has no prime factors in } \mathcal{Q}(y)\} \\
& \mathcal{A}_{2}:=\mathcal{A} \backslash \mathcal{A}_{1} .
\end{aligned}
$$

If $n \in \mathcal{A}_{2}$, then n has a prime factor $p \in \mathcal{Q}(y)$,

Proof of the upper bound $(2 / 2)$

Now we split \mathcal{A} into two subsets:

$$
\begin{aligned}
& \mathcal{A}_{1}:=\{n \in \mathcal{A}: n \text { has no prime factors in } \mathcal{Q}(y)\} \\
& \mathcal{A}_{2}:=\mathcal{A} \backslash \mathcal{A}_{1} .
\end{aligned}
$$

If $n \in \mathcal{A}_{2}$, then n has a prime factor $p \in \mathcal{Q}(y)$, so that $\ell(q) \mid z(p)$.

Proof of the upper bound $(2 / 2)$

Now we split \mathcal{A} into two subsets:

$$
\begin{aligned}
& \mathcal{A}_{1}:=\{n \in \mathcal{A}: n \text { has no prime factors in } \mathcal{Q}(y)\} \\
& \mathcal{A}_{2}:=\mathcal{A} \backslash \mathcal{A}_{1} .
\end{aligned}
$$

If $n \in \mathcal{A}_{2}$, then n has a prime factor $p \in \mathcal{Q}(y)$, so that $\ell(q) \mid z(p)$. Hence, $\ell(q) \mid \ell(n)$

Proof of the upper bound $(2 / 2)$

Now we split \mathcal{A} into two subsets:

$$
\begin{aligned}
& \mathcal{A}_{1}:=\{n \in \mathcal{A}: n \text { has no prime factors in } \mathcal{Q}(y)\} \\
& \mathcal{A}_{2}:=\mathcal{A} \backslash \mathcal{A}_{1} .
\end{aligned}
$$

If $n \in \mathcal{A}_{2}$, then n has a prime factor $p \in \mathcal{Q}(y)$, so that $\ell(q) \mid z(p)$. Hence, $\ell(q) \mid \ell(n)$ and, by the previous Lemma, $q \mid n$.

Proof of the upper bound $(2 / 2)$

Now we split \mathcal{A} into two subsets:

$$
\begin{aligned}
& \mathcal{A}_{1}:=\{n \in \mathcal{A}: n \text { has no prime factors in } \mathcal{Q}(y)\} \\
& \mathcal{A}_{2}:=\mathcal{A} \backslash \mathcal{A}_{1} .
\end{aligned}
$$

If $n \in \mathcal{A}_{2}$, then n has a prime factor $p \in \mathcal{Q}(y)$, so that $\ell(q) \mid z(p)$. Hence, $\ell(q) \mid \ell(n)$ and, by the previous Lemma, $q \mid n$. Thus all the elements of \mathcal{A}_{2} are multiples of q.

Proof of the upper bound $(2 / 2)$

Now we split \mathcal{A} into two subsets:

$$
\begin{aligned}
& \mathcal{A}_{1}:=\{n \in \mathcal{A}: n \text { has no prime factors in } \mathcal{Q}(y)\} \\
& \mathcal{A}_{2}:=\mathcal{A} \backslash \mathcal{A}_{1} .
\end{aligned}
$$

If $n \in \mathcal{A}_{2}$, then n has a prime factor $p \in \mathcal{Q}(y)$, so that $\ell(q) \mid z(p)$. Hence, $\ell(q) \mid \ell(n)$ and, by the previous Lemma, $q \mid n$. Thus all the elements of \mathcal{A}_{2} are multiples of q.

In conclusion,

$$
\limsup _{x \rightarrow+\infty} \frac{\# \mathcal{A}(x)}{x} \leq \limsup _{x \rightarrow+\infty} \frac{\# \mathcal{A}_{1}(x)}{x}+\limsup _{x \rightarrow+\infty} \frac{\# \mathcal{A}_{2}(x)}{x}
$$

Proof of the upper bound $(2 / 2)$

Now we split \mathcal{A} into two subsets:

$$
\begin{aligned}
& \mathcal{A}_{1}:=\{n \in \mathcal{A}: n \text { has no prime factors in } \mathcal{Q}(y)\} \\
& \mathcal{A}_{2}:=\mathcal{A} \backslash \mathcal{A}_{1} .
\end{aligned}
$$

If $n \in \mathcal{A}_{2}$, then n has a prime factor $p \in \mathcal{Q}(y)$, so that $\ell(q) \mid z(p)$. Hence, $\ell(q) \mid \ell(n)$ and, by the previous Lemma, $q \mid n$. Thus all the elements of \mathcal{A}_{2} are multiples of q.

In conclusion,

$$
\begin{aligned}
\limsup _{x \rightarrow+\infty} \frac{\# \mathcal{A}(x)}{x} & \leq \limsup _{x \rightarrow+\infty} \frac{\# \mathcal{A}_{1}(x)}{x}+\limsup _{x \rightarrow+\infty} \frac{\# \mathcal{A}_{2}(x)}{x} \\
& \leq \prod_{p \in \mathcal{Q}(y)}\left(1-\frac{1}{p}\right)+
\end{aligned}
$$

Proof of the upper bound $(2 / 2)$

Now we split \mathcal{A} into two subsets:

$$
\begin{aligned}
& \mathcal{A}_{1}:=\{n \in \mathcal{A}: n \text { has no prime factors in } \mathcal{Q}(y)\} \\
& \mathcal{A}_{2}:=\mathcal{A} \backslash \mathcal{A}_{1} .
\end{aligned}
$$

If $n \in \mathcal{A}_{2}$, then n has a prime factor $p \in \mathcal{Q}(y)$, so that $\ell(q) \mid z(p)$. Hence, $\ell(q) \mid \ell(n)$ and, by the previous Lemma, $q \mid n$. Thus all the elements of \mathcal{A}_{2} are multiples of q.

In conclusion,

$$
\begin{aligned}
\limsup _{x \rightarrow+\infty} \frac{\# \mathcal{A}(x)}{x} & \leq \limsup _{x \rightarrow+\infty} \frac{\# \mathcal{A}_{1}(x)}{x}+\limsup _{x \rightarrow+\infty} \frac{\# \mathcal{A}_{2}(x)}{x} \\
& \leq \prod_{p \in \mathcal{Q}(y)}\left(1-\frac{1}{p}\right)+\frac{1}{q}
\end{aligned}
$$

Proof of the upper bound $(2 / 2)$

Now we split \mathcal{A} into two subsets:

$$
\begin{aligned}
& \mathcal{A}_{1}:=\{n \in \mathcal{A}: n \text { has no prime factors in } \mathcal{Q}(y)\} \\
& \mathcal{A}_{2}:=\mathcal{A} \backslash \mathcal{A}_{1} .
\end{aligned}
$$

If $n \in \mathcal{A}_{2}$, then n has a prime factor $p \in \mathcal{Q}(y)$, so that $\ell(q) \mid z(p)$. Hence, $\ell(q) \mid \ell(n)$ and, by the previous Lemma, $q \mid n$. Thus all the elements of \mathcal{A}_{2} are multiples of q.

In conclusion,

$$
\begin{aligned}
\limsup _{x \rightarrow+\infty} \frac{\# \mathcal{A}(x)}{x} & \leq \limsup _{x \rightarrow+\infty} \frac{\# \mathcal{A}_{1}(x)}{x}+\limsup _{x \rightarrow+\infty} \frac{\# \mathcal{A}_{2}(x)}{x} \\
& \leq \prod_{p \in \mathcal{Q}(y)}\left(1-\frac{1}{p}\right)+\frac{1}{q}<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
\end{aligned}
$$

Proof of the upper bound $(2 / 2)$

Now we split \mathcal{A} into two subsets:

$$
\begin{aligned}
& \mathcal{A}_{1}:=\{n \in \mathcal{A}: n \text { has no prime factors in } \mathcal{Q}(y)\} \\
& \mathcal{A}_{2}:=\mathcal{A} \backslash \mathcal{A}_{1} .
\end{aligned}
$$

If $n \in \mathcal{A}_{2}$, then n has a prime factor $p \in \mathcal{Q}(y)$, so that $\ell(q) \mid z(p)$. Hence, $\ell(q) \mid \ell(n)$ and, by the previous Lemma, $q \mid n$. Thus all the elements of \mathcal{A}_{2} are multiples of q.

In conclusion,

$$
\begin{aligned}
\limsup _{x \rightarrow+\infty} \frac{\# \mathcal{A}(x)}{x} & \leq \limsup _{x \rightarrow+\infty} \frac{\# \mathcal{A}_{1}(x)}{x}+\limsup _{x \rightarrow+\infty} \frac{\# \mathcal{A}_{2}(x)}{x} \\
& \leq \prod_{p \in \mathcal{Q}(y)}\left(1-\frac{1}{p}\right)+\frac{1}{q}<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
\end{aligned}
$$

and, by the arbitraryness of ε, it follows that $\# \mathcal{A}(x)=o(x)$. \square

Reference and Open questions

Reference and Open questions

围 L. and Sanna, On the greatest common divisor of n and the nth Fibonacci number, Rocky Mountain J. Math. (accepted).

Reference and Open questions

围 L. and Sanna, On the greatest common divisor of n and the nth Fibonacci number, Rocky Mountain J. Math. (accepted).

Open questions

Reference and Open questions

嗇 L. and Sanna, On the greatest common divisor of n and the nth Fibonacci number, Rocky Mountain J. Math. (accepted).

Open questions

(1) Can we find an effective upper bound for $\# \mathcal{A}(x)$?

Reference and Open questions

嗇 L. and Sanna, On the greatest common divisor of n and the nth Fibonacci number, Rocky Mountain J. Math. (accepted).

Open questions

(1) Can we find an effective upper bound for $\# \mathcal{A}(x)$?
(2) What is the true order of $\# \mathcal{A}(x)$?

Reference and Open questions

围 L. and Sanna, On the greatest common divisor of n and the nth Fibonacci number, Rocky Mountain J. Math. (accepted).

Open questions

(1) Can we find an effective upper bound for $\# \mathcal{A}(x)$?
(2) What is the true order of $\# \mathcal{A}(x)$? Is it $\# \mathcal{A}(x) \ll x / \log x$ or bigger ?

Reference and Open questions

围 L. and Sanna, On the greatest common divisor of n and the nth Fibonacci number, Rocky Mountain J. Math. (accepted).

Open questions

(1) Can we find an effective upper bound for $\# \mathcal{A}(x)$?
(2) What is the true order of $\# \mathcal{A}(x)$? Is it $\# \mathcal{A}(x) \ll x / \log x$ or bigger ?
(3) Can we find an asymptotic formula for $\# \mathcal{A}(x)$?

