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F, and n

Let (F,)n>1 be the sequence of Fibonacci numbers, defined as usual by
FR=F=1 and Fn+2 = FnJrl + F,

for all n > 1. It is well known that F, and n have many arithmetical
relations, for example:

e Fp, | Fyif and only if m | n.
o gcd(Fm, Fn) = Fgcd(m,n)-
® F2 | Fpy if and only if Fyy | n.
In particular, the set of positive integers n such that n | F, has been

studied by Alba Gonzalez—Luca—Pomerance—Shparlinski, André-Jeannin,
Luca—Tron, Somer.
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Integers of the form ged(n, F,)

Let A be the set of all integers of the form ged(n, F,) for some n > 1.
For example, 10 € A since 10 = gcd(30, 832040) = gcd(30, F3o).

The first elements of A are
1, 2, 5, 7, 10, 12, 13, 17, 24, 25, 26, 29, 34, 35, 36, ...

It is not immediately clear how to establish if n € A. However, if z(n)
denotes the rank of appearance of n, that is, z(n) is the smallest k > 1
such that n divides Fy, and if we put ¢(n) := lcm(n, z(n)), then we have:

Lemma
n € A if and only if n = gcd(€(n), Fy(py)- J
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How big is A ?

Given a set of positive integers S, put S(x) := S N1, x] for all x > 1.

Theorem (L. and Sanna, 2017)

We have
#A(x) > x
log x
for all x > 2, while
#A(x) = o(x)

as X — +o00.

Let us see a brief sketch of the proof...
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Divisibility properties of z(p)

For each positive integer m, let

Zm) et HAPE XM 2(6))

X—r+00
where p is a prime number.

Theorem (Cubre and Rouse 2014)
We have

Z(m) = r(m) [T 5=

x/ log x

e

q¢||m

where q€ runs over the prime powers in the factorization of m, while

1
r(m):=<5/4
1/2

if 104 m,
if m = 10 mod 20,
if20 | m.
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Proof of the lower bound (1/4)

The key tool of the proof is the following elementary result:

Lemma
If p # 3 is a prime such that ¢(q) t z(p) for all primes q, then p € A. J

Let y > 0 be a real number to be chosen later, and define

P1 = {p:qtz(p) forall g € [3,y]},
P, = {p:{(q) ( ) for some g >y},
P = P\ P2

Thanks to the previous Lemma, we have P C AU {3}. Hence, it is
enough to prove that

#P(x) >

log x’
for all x > 2.
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Let P, be the product of all primes in [3,y], and let 1 be the Mobius
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Proof of the lower bound (2/4)

Let P, be the product of all primes in [3,y], and let 1 be the Mobius

function. By the inclusion-exclusion principle, and by Cubre and Rouse’s
result, we have

lim #Pl(X) — lim Z (m) - #{P Sx:m ‘ Z(p)}
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Proof of the lower bound (2/4)

Let P, be the product of all primes in [3,y], and let 1 be the Mobius

function. By the inclusion-exclusion principle, and by Cubre and Rouse’s
result, we have

lim #P1(x)

= im Y u(m)- #{p<x:m|z(p)}

x—+oo x/logx  x—+oo

ey x/ log x
= > umzm =[] -2 = ][] <1_ qzq—l) '
m| P, 3<q<y 3<q<y

Therefore, by Mertens’ theorem, we get that

1 X
#P1(x) > —
logy logx

for all x > xo(y).

6/ 11



Proof of the lower bound (3/4)

Now, since z(p) | p £ 1 for all primes p, we have

7/11



Proof of the lower bound (3/4)
Now, since z(p) | p £ 1 for all primes p, we have

#Pax) < 3 #ip < x: U(a) | 2(p)}

q>y

7/11



Proof of the lower bound (3/4)
Now, since z(p) | p £ 1 for all primes p, we have

#Pa(x) < S #{p<x:0(a) | 2(p)} < 3 m(x,€(q), 1),

q>y q>y

where 7(x, m, a) is the number of primes p < x such that p = a mod m.

7/11



Proof of the lower bound (3/4)
Now, since z(p) | p £ 1 for all primes p, we have

#Pa(x) < S #{p<x:0(a) | 2(p)} < 3 m(x,€(q), 1),

q>y q>y

where 7(x, m, a) is the number of primes p < x such that p = a mod m.

Then, using Brun—Titchmarsh inequality

2x

e m.3) < Y log(x/m)’

X > m,

where ¢ is the Euler’s totient function,

7/11



Proof of the lower bound (3/4)
Now, since z(p) | p £ 1 for all primes p, we have

#Pa(x) < S #{p<x:0(a) | 2(p)} < 3 m(x,€(q), 1),

q>y q>y

where 7(x, m, a) is the number of primes p < x such that p = a mod m.

Then, using Brun—Titchmarsh inequality

2x

e m.3) < Y log(x/m)’

X > m,

where ¢ is the Euler’s totient function, and the technical bound

1 1
2 i) < 5

a>y

7/11



Proof of the lower bound (3/4)
Now, since z(p) | p £ 1 for all primes p, we have

#Pa(x) < S #{p<x:0(a) | 2(p)} < 3 m(x,€(q), 1),

qa>y q>y

where 7(x, m, a) is the number of primes p < x such that p = a mod m.

Then, using Brun—Titchmarsh inequality

2x

e m.3) < Y log(x/m)’

X > m,

where ¢ is the Euler’s totient function, and the technical bound

1 1
2 L) <y

q>y

it follows that (we omit several details) ...
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Proof of the lower bound (4/4)

1 X 7/8
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Proof of the lower bound (4/4)

L 7/8
#P2(x) < yl/4 log x o
In conclusion,
a 1)) o log x X
> - 2 - - '
#P(x) > #P1(x) — #P2(x) > <Iogy yl/4 x1/8 ) log x

for all x > xp(y) and some constants ¢y, c; > 0.

Hence, picking a sufficiently large y, we get

#P(x) >

log x’

as desired. [J
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Proof of the upper bound (1/2)

We shall use the following result:

Lemma

If n € A and ¢(q) | £(n) for some prime q, then q divides n.

Fix € > 0 and pick a prime g such that 1/g < £/2. Moreover, put

Q:={p:q)|z(p)}

By Cubre and Rouse's result, we have that Q has a positive relative
density in the set of all primes. As a consequence, we can pick a
sufficiently large y > 0 so that

1)

pEQ(y)
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Proof of the upper bound (2/2)

Now we split A into two subsets:
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Now we split A into two subsets:
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Ay = A\ A

If n € Ay, then n has a prime factor p € Q(y), so that ¢(q) | z(p). Hence,
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Now we split A into two subsets:

A; = {n€ A: nhas no prime factors in Q(y)}
Ay = A\ A

If n € Ay, then n has a prime factor p € Q(y), so that ¢(q) | z(p). Hence,

2(q) | £(n) and, by the previous Lemma, g | n. Thus all the elements of A;
are multiples of g.

In conclusion,

lim sup #AK) < limsup #A1(x) + lim sup #Aa(x)
X—r+00 X X—3—4-00 3% X0 X
1 1
= H I——)+-< = + ‘= g,
p qg 2 2
pEQ(y)

and, by the arbitraryness of ¢, it follows that #.A(x) = o(x). O
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Open questions

(1) Can we find an effective upper bound for #.A4(x) ?

(2) What is the true order of #.A(x) ? Is it #A(x) < x/ log x or bigger ?

(3) Can we find an asymptotic formula for #.A(x) ?
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