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Fn and n

Let (Fn)n≥1 be the sequence of Fibonacci numbers, defined as usual by

F1 = F2 = 1 and Fn+2 = Fn+1 + Fn

for all n ≥ 1.

It is well known that Fn and n have many arithmetical
relations, for example:

Fm | Fn if and only if m | n.

gcd(Fm,Fn) = Fgcd(m,n).

F 2
m | Fmn if and only if Fm | n.

In particular, the set of positive integers n such that n | Fn has been
studied by Alba González–Luca–Pomerance–Shparlinski, André-Jeannin,
Luca–Tron, Somer.
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Integers of the form gcd(n,Fn)

Let A be the set of all integers of the form gcd(n,Fn) for some n ≥ 1.

For example, 10 ∈ A since 10 = gcd(30, 832040) = gcd(30,F30).

The first elements of A are

1, 2, 5, 7, 10, 12, 13, 17, 24, 25, 26, 29, 34, 35, 36, . . .

It is not immediately clear how to establish if n ∈ A. However, if z(n)
denotes the rank of appearance of n, that is, z(n) is the smallest k ≥ 1
such that n divides Fk , and if we put `(n) := lcm(n, z(n)), then we have:

Lemma

n ∈ A if and only if n = gcd(`(n),F`(n)).
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How big is A ?

Given a set of positive integers S, put S(x) := S ∩ [1, x ] for all x ≥ 1.

Theorem (L. and Sanna, 2017)

We have
#A(x)� x

log x

for all x ≥ 2, while
#A(x) = o(x)

as x → +∞.

Let us see a brief sketch of the proof...
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Divisibility properties of z(p)

For each positive integer m, let

Z (m) := lim
x→+∞

#{p ≤ x : m | z(p)}
x/ log x

,

where p is a prime number.

Theorem (Cubre and Rouse 2014)

We have

Z (m) = r(m)
∏
qe ||m

q2−e

q2 − 1
,

where qe runs over the prime powers in the factorization of m, while

r(m) :=


1 if 10 - m,
5/4 if m ≡ 10 mod 20,

1/2 if 20 | m.
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Proof of the lower bound (1/4)

The key tool of the proof is the following elementary result:

Lemma

If p 6= 3 is a prime such that `(q) - z(p) for all primes q, then p ∈ A.

Let y > 0 be a real number to be chosen later, and define

P1 :=
{
p : q - z(p) for all q ∈ [3, y ]

}
,

P2 :=
{
p : `(q) | z(p) for some q > y

}
,

P := P1 \ P2

Thanks to the previous Lemma, we have P ⊆ A ∪ {3}. Hence, it is
enough to prove that

#P(x)� x

log x
,

for all x ≥ 2.
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Proof of the lower bound (2/4)

Let Py be the product of all primes in [3, y ],

and let µ be the Möbius
function. By the inclusion-exclusion principle, and by Cubre and Rouse’s
result, we have

lim
x→+∞

#P1(x)

x/ log x
= lim

x→+∞

∑
m |Py

µ(m) · #{p ≤ x : m | z(p)}
x/ log x

=
∑
m |Py

µ(m)Z (m) =
∏

3≤q≤y
(1− Z (q)) =

∏
3≤q≤y

(
1− q

q2 − 1

)
.

Therefore, by Mertens’ theorem, we get that

#P1(x)� 1

log y
· x

log x
,

for all x ≥ x0(y).
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Proof of the lower bound (3/4)

Now, since z(p) | p ± 1 for all primes p, we have

#P2(x) ≤
∑
q> y

#{p ≤ x : `(q) | z(p)} ≤
∑
q> y

π(x , `(q),±1),

where π(x ,m, a) is the number of primes p ≤ x such that p ≡ a mod m.

Then, using Brun–Titchmarsh inequality

π(x ,m, a) <
2x

ϕ(m) log(x/m)
, x > m,

where ϕ is the Euler’s totient function, and the technical bound∑
q> y

1

ϕ(`(q))
� 1

y1/4
,

it follows that (we omit several details) ...
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Proof of the lower bound (4/4)

...

#P2(x)� 1

y1/4
· x

log x
+ x7/8.

In conclusion,

#P(x) ≥ #P1(x)−#P2(x) ≥
(

c1

log y
− c2

y1/4
− c2 log x

x1/8

)
· x

log x

for all x ≥ x0(y) and some constants c1, c2 > 0.

Hence, picking a sufficiently large y , we get

#P(x)� x

log x
,

as desired. �
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Proof of the upper bound (1/2)

We shall use the following result:

Lemma

If n ∈ A and `(q) | `(n) for some prime q, then q divides n.

Fix ε > 0 and pick a prime q such that 1/q < ε/2. Moreover, put

Q := {p : `(q) | z(p)}.

By Cubre and Rouse’s result, we have that Q has a positive relative
density in the set of all primes. As a consequence, we can pick a
sufficiently large y > 0 so that∏

p∈Q(y)

(
1− 1

p

)
<
ε

2
.
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Proof of the upper bound (2/2)

Now we split A into two subsets:

A1 := {n ∈ A : n has no prime factors in Q(y)}
A2 := A \ A1.

If n ∈ A2, then n has a prime factor p ∈ Q(y), so that `(q) | z(p). Hence,
`(q) | `(n) and, by the previous Lemma, q | n. Thus all the elements of A2

are multiples of q.

In conclusion,

lim sup
x→+∞

#A(x)

x
≤ lim sup

x→+∞

#A1(x)

x
+ lim sup

x→+∞

#A2(x)

x

≤
∏

p∈Q(y)

(
1− 1

p

)
+

1

q
<
ε

2
+
ε

2
= ε,

and, by the arbitraryness of ε, it follows that #A(x) = o(x). �
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Reference and Open questions

L. and Sanna, On the greatest common divisor of n and the nth
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Open questions

(1) Can we find an effective upper bound for #A(x) ?

(2) What is the true order of #A(x) ? Is it #A(x)� x/ log x or bigger ?

(3) Can we find an asymptotic formula for #A(x) ?
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