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We define the shifted convolution sum (also,
correlation) of any couple f,g: N — C as

Cro(N,a)E 3 f(n)g(n+a).

n<N
The integer variable a > 0 is the shift.

There’'s a lack of asymptotic/explicit formulae,
for correlations of interesting f,g (esp., case
f =g = A, the von-Mangoldt function, with
even a = 2k > 2, involves 2k—twin primes!),
too difficult (apart special cases) to achieve,
even for one single, fixed shift a > O.



d d
For f/ éff * 1 and g’ éfg * 1 MObius inversion

= f(n)=2 f(d) and g(m)=) 4¢(q)

d|n g|lm

so : vital remark is that inside

(1) Cpg(Nya)=) fi(d)Y (@) > 1
d q

n<N
n=0 mod d
n=—a Mod q

=> fla Y d@ > 1,

d<N q<N-+a n<N
n=0 mod d
n=—a Mod q

our f(n), g(m) become truncated divisor sums

> (), >  4(q)

d|n,d<N qlm,q<N-+a



(depending on both variables, N and shift a);
the condition d|n can be expressed as

g =5 3 ealin) == 3" eq(n),

j<d qld

involving Ramanujan sums

S eyGn),

7<q,(4,9)=1

after g.c.d. rearrangement, from orthogonality
d .
of additive characters eq(m) el g2mim/q.

We immediately get any arithmetic functions
fig : N — C have (inside C¢ ) following finite
Ramanujan expansions (exchanging sums now)

() =3 i Dlg,= > Fl@)cg(n),

d<N q<N

gm)=> gDy, = > g(@cg(m),

d<N-a q<N-+a



(finite expansions depending on N, a again)

with Ramanujan coefficients

de f > f'(d) A(q)def > g’(d).
d

flg) =

d<N d d<N+a
d=0 mod q d=0 mod g

T hus heuristic formula for f and g correlation

(2) Ctg(N,a) ~ Sgg(a)N,

with a > 1, defining the f and g singular series:

def

Stgla) = Z F(@)d(a)cq(a).

This has been proved in our first work (with
Murty & Saha, see JNT) for particular f, g



A~

Actually, it is the singular sum (after N, f = 0)
SPOEY F(@)3(q)cq(a).

g<N

On the other hand, it depends on N. But, this
variable is implicit in f,g.

Aficionados of Hardy-Littlewood method will
say: these are only partial sums of singular
series!



Heuristic (2) inspired the definition:

(3) Cpy(N,a)= " Cfg(N,O)cy(a), VaeN
(=1

which is the shift-Ramanujan expansion of our
correlation. Notice: Hildebrand’s Theorem en-
sures pointwise convergence! (For all arith-
metic functions, here shift a is the argument)

(Big!) Problem is to find the shift-Ramanujan
coefficients Cy ,(N,£).

Now, we don’t know, if (3) is a finite sum!

For this, Carmichael formula

Cry(N, ) = 0 lim = Z C (N, m)cy(m)

m<x

is useful. Two pbs: 1) when? & 2) how?

Both questions need two new concepts: the
purity, of a Ramanujan expansion, and the fair
correlations.



We say a Ramanujan expansion is “pure’”, iff
coefficients & their supports do not depend
on outer variable. In other words, the variable
we expand appears only in Ramanujan sums.
In above (3) outer variable's the shift a.

Purity is a strong requirement: finite & pure
Ramanujan exp.s are truncated divisor sums!
(Hildebrand Th.m expands any f(n) into finite
Ramanujan exp. = not pure: n—dependence)

Very similar is the definition: C¢,(N,a) is fair

d
<éf> a—dependence is only inside g argument

(n + a). Equivalently, f(n) and g(q) do not
depend on a, neither in supports, in following

(4) Cygy(N,a) —ZQ(Q) > f(n)eg(n+ a).

n<N

This formula comes easily from the g finite
Ramanujan expansion.



Our 2nd paper (C-Murty) proves the following.
Abbreviate Ramanujan expansion (3) as s.R.e.
Theorem 1. Assume g(m) = Xgim.q<Q Jd(q),
Q independent of a and C¢ ,(N,a) is fair. Then
F.A.E.

e S.R.e. is pure & uniformly convergent;

e S.R.e. coefficients from Carmichael formula;

e S.R.e. hasRamanujan exact explicit formula:

Crq(Nya) = > 9() > f(n)ep(n)ey(a)Va € N
1<Q ©(£) n<N

e S.R.e. is pure & finite.

Definition: such a s.R.e. is regular.

Remark: Once found the Reef, we’'d find the
treasure (our’'s to prove (2) above) !



This is not a joke, but (for reasonable f, g) a
consequence:

Corollary 1. Same hypotheses of Theorem 1

give, for f(n) = ¥ gn.a<p f'(d), :8811\)[ <1-24,
with regular s.R.e., whenever f,qg satisfy the
Ramanujan Conjecture,

Ct4(N,a) = St (a)N + O(NTT9).

Notice *“gain”, 4 > 0O, in remainder’'s exponent
depends on f.

(In general they both work, for all g, taking
Q@ = N and cut as (1) on arxiv:1709.06445)

10



The case f = g = A is not covered now (i.e.,
in II, Cor.1) but in arxiv:1709.06445 we are
calculating a—primes (a = 2k > 2) correlation,
from

> A(n)ep(n) = D> (logp)ep(p) ~ (LN

n<N p<N

(V¢, apart “few cases”, by PNT), in the Reef
of a—twin primes. (Btw, A(qg) =7 See JNT)

Twin primes regularity gives H-L asymptotic!
(On arxiv:1709.06445 we need Delange Hp,

now even less: see following)

Since regularity is “hard”, to prove, we come
to “soft”, say, hypotheses: work in progress.
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Natural question: what can we prove only from
“g is of range @) and fair correlation”? These
(in Th.m 1), we call “basic hypotheses”, give

Cpg(Nya) = > Cro(N,Q,0ci(a)+ Y C% (d),
<@ d|a
d>Q

by MObius inversion & d|la formula, with pure
“truncated Ramanujan coeff.s":

_ def C% (d)
Cf,g(N7Q7€) é Z f’%
d<@
d=0 mod ¢

similar to Wintner-Delange formula (for in-
finite expansions, under hypotheses). Defined
Eratosthenes transform of correlation as:

Ch (@) = C) (N, d) L SO (N, ) pu(dft).
|d
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Then, (4) above, fairness and Carmichael for
truncated Cy, (from purity) give Vg€ N

= 9D S~ rye(n) — L(a).

Cr4(N,Q,q) o) =

abbreviating Vg € N

L) (q)nm_z S (@)eqg(m),

m<x d|m,d>Q

notice always exists € C and vanishes (as 0—0)
ong>@Q. In all, C¢ ,(N,a) =

Z (Q(Q) Z f(n)cq(n)—L(q)> cq(a)+ ZCfg(d)

qgQ (2) n<N d|a
d>Q

comes from " g of range Q and fair correlation’.
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Well, L(q) is a kind of “grey box", since:

S Y el

m<x d|m,d>Q

= 3 @ Y edr)

QR<d<z K<5

5 ()

Q<d<zx X

from classical exponential sums cancellation.
Then “Slow Decay”, abbrev. SD,

SD > |C},g(d)| =o(x), *x —
d<ux
(tantamount to : |C}g(d)|’s mean-value=0 1)

is the right further hypothesis to get L(gq)
and the new “beyond Ramanujan coeff.s":

C’ C. (d)
d>Q QR<d<zx
d=0 mod q d=0 mod q
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This added to C;,(N,Q,q) above gives the
q—th “extended Ramanujan coeff."”:

C’. (d) C". (d)
d=0 mod d el d<zx d
N e d=0 mod q

where dlim &€ C and =0 on g > @, like beyond
ones. Extended are Wintner-Delange!

In all, basic hypotheses & Slow Decay give
explicitly Wintner-Delange coefficients

C'. (d ~
> ro( _ 90 S F(n)ee(n)

i=0mod ¢ @ e (£) n<N

very easily from above! Short calculations add

cro(Na) =Y 29 S rmyernyen(a)

€§Q (6) n<N

by DD s ),

d>Q ¢|d
>Q
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See, if we may exchange /4,d sums into

(d) C% 4 (d)
>y Pywm=y y Ga?

d=1 /¢|d ¢=1d=0 mod ¢

ce(a)

then on LHS detecting 1,4 = 3 ¥4 c,(a) gives

o0 C},g(d) /
dz:l T Z Cf(a’) — Z Cf,g(d) — Cf,g(N7 CL),

¢|d d|a

with on RHS the Wintner-Delange coefficients

¢’ (d
3 1l _ 90 S f(n)ep(n), VLEN

d=0 mod ¢ d (6) n<N

thus giving, again, the Reef. Under which hy-
potheses 7 For example, Wintner Assumption:
< |C% (d)
WA Z | 1.9 | < 00
d=1 d
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because (key ingredient: vanishing after Q)

> C% (D]
> Y ()
¢=1d=0 mod /
< @ max|c (a)|z fg( )| < 00
<Q ¢ d

= double series abs.convergence, whence /4, d
exchange. Notice, WA gives the explicit for-
mula for coefficients, based on Carmichael for-
mula; so, the hypotheses of Theorem 1 ensure
that Carmichael formula reaches the Reef!

In all: "¢ of range @, fair correlation & WA"
— T he Reef!

Actually, under basic hypotheses, WA is the
fifth condition to express regularity !

Advantage of WA on other conditions is, of
course: “easy check’.

(One technical, last comment's: WA — SD)
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THANKS!II
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