Finite Ramanujan expansions and shifted convolution sums

(joint work with M.Ram Murty \& B. Saha)

Giovanni Coppola
University of Salerno

We define the shifted convolution sum (also, correlation) of any couple $f, g: \mathbf{N} \rightarrow \mathbf{C}$ as

$$
C_{f, g}(N, a) \stackrel{\text { def }}{=} \sum_{n \leq N} f(n) g(n+a)
$$

The integer variable $a>0$ is the shift.

There's a lack of asymptotic/explicit formulæ, for correlations of interesting f, g (esp., case $f=g=\wedge$, the von-Mangoldt function, with even $a=2 k \geq 2$, involves $2 k$-twin primes!), too difficult (apart special cases) to achieve, even for one single, fixed shift $a>0$.

For $f^{\prime} \stackrel{\text { def }}{=} f * \mu$ and $g^{\prime} \stackrel{\text { def }}{=} g * \mu$ Möbius inversion

$$
\Rightarrow \quad f(n)=\sum_{d \mid n} f^{\prime}(d) \quad \text { and } \quad g(m)=\sum_{q \mid m} g^{\prime}(q)
$$

so : vital remark is that inside
(1) $\quad C_{f, g}(N, a)=\sum_{d} f^{\prime}(d) \sum_{q} g^{\prime}(q) \sum_{\substack{n \leq N \\ n \equiv 0 \bmod d \\ n \equiv-a \bmod q}} 1$

$$
=\sum_{d \leq N} f^{\prime}(d) \sum_{\substack{q \leq N+a}} g^{\prime}(q) \sum_{\substack{n \leq N \\ n \equiv 0 \bmod d \\ n \equiv-a \bmod q}} 1
$$

our $f(n), g(m)$ become truncated divisor sums

$$
\sum_{d \mid n, d \leq N} f^{\prime}(d), \quad \sum_{q \mid m, q \leq N+a} g^{\prime}(q)
$$

(depending on both variables, N and shift a); the condition $d \mid n$ can be expressed as

$$
\mathbf{1}_{d \mid n}=\frac{1}{d} \sum_{j \leq d} e_{d}(j n)=\frac{1}{d} \sum_{q \mid d} c_{q}(n),
$$

involving Ramanujan sums

$$
c_{q}(n) \stackrel{\text { def }}{=} \sum_{j \leq q,(j, q)=1} e_{q}(j n)
$$

after g.c.d. rearrangement, from orthogonality of additive characters $e_{q}(m) \stackrel{\text { def }}{=} e^{2 \pi i m / q}$.

We immediately get any arithmetic functions $f, g: \mathbf{N} \rightarrow \mathbf{C}$ have (inside $C_{f, g}$) following finite Ramanujan expansions (exchanging sums now)

$$
\begin{gathered}
f(n)=\sum_{d \leq N} f^{\prime}(d) 1_{d \mid n}=\sum_{q \leq N} \widehat{f}(q) c_{q}(n), \\
g(m)=\sum_{d \leq N+a} g^{\prime}(d) \mathbf{1}_{d \mid m}=\sum_{q \leq N+a} \widehat{g}(q) c_{q}(m),
\end{gathered}
$$

(finite expansions depending on N, a again)
with Ramanujan coefficients

$$
\widehat{f}(q) \stackrel{\text { def }}{=} \sum_{\substack{d \leq N \\ d \equiv 0 \bmod q}} \frac{f^{\prime}(d)}{d}, \widehat{g}(q) \stackrel{\text { def }}{=} \sum_{\substack{d \leq N+a \\ d \equiv 0 \bmod q}} \frac{g^{\prime}(d)}{d} .
$$

Thus heuristic formula for f and g correlation

$$
\begin{equation*}
C_{f, g}(N, a) \sim S_{f, g}(a) N, \tag{2}
\end{equation*}
$$

with $a \geq 1$, defining the f and g singular series:

$$
S_{f, g}(a) \stackrel{\text { def }}{=} \sum_{q=1}^{\infty} \widehat{f}(q) \widehat{g}(q) c_{q}(a) .
$$

This has been proved in our first work (with Murty \& Saha, see JNT) for particular f, g.

Actually, it is the singular sum (after $N, \widehat{f}=0$)

$$
S_{f, g}(a)=\sum_{q \leq N} \widehat{f}(q) \widehat{g}(q) c_{q}(a) .
$$

On the other hand, it depends on N. But, this variable is implicit in f, g.

Aficionados of Hardy-Littlewood method will say: these are only partial sums of singular series!

Heuristic (2) inspired the definition:
(3) $C_{f, g}(N, a)=\sum_{\ell=1}^{\infty} \widehat{C_{f, g}}(N, \ell) c_{\ell}(a), \quad \forall a \in \mathbf{N}$
which is the shift-Ramanujan expansion of our correlation. Notice: Hildebrand's Theorem ensures pointwise convergence! (For all arithmetic functions, here shift a is the argument)
(Big!) Problem is to find the shift-Ramanujan coefficients $\widehat{C_{f, g}}(N, \ell)$.

Now, we don't know, if (3) is a finite sum!
For this, Carmichael formula

$$
\widehat{C_{f, g}}(N, \ell)=\frac{1}{\varphi(\ell)} \lim _{x \rightarrow \infty} \frac{1}{x} \sum_{m \leq x} C_{f, g}(N, m)_{\ell}(m)
$$

is useful. Two pbs: 1) when? \& 2) how?
Both questions need two new concepts: the purity, of a Ramanujan expansion, and the fair correlations.

We say a Ramanujan expansion is "pure", iff coefficients \& their supports do not depend on outer variable. In other words, the variable we expand appears only in Ramanujan sums. In above (3) outer variable's the shift a.

Purity is a strong requirement: finite \& pure Ramanujan exp.s are truncated divisor sums! (Hildebrand Th.m expands any $f(n)$ into finite Ramanujan exp. \Rightarrow not pure: n-dependence)

Very similar is the definition: $C_{f, g}(N, a)$ is fair $\stackrel{\text { def }}{\Longleftrightarrow} a$-dependence is only inside g argument $(n+a)$. Equivalently, $f(n)$ and $\widehat{g}(q)$ do not depend on a, neither in supports, in following

$$
\text { (4) } \quad C_{f, g}(N, a)=\sum_{q} \widehat{g}(q) \sum_{n \leq N} f(n) c_{q}(n+a) \text {. }
$$

This formula comes easily from the g finite Ramanujan expansion.

Our 2nd paper (C-Murty) proves the following.
Abbreviate Ramanujan expansion (3) as s.R.e.
Theorem 1. Assume $g(m)=\sum_{q \mid m, q \leq Q} g^{\prime}(q)$, Q independent of a and $C_{f, g}(N, a)$ is fair. Then F.A.E.

- s.R.e. is pure \& uniformly convergent;
- s.R.e. coefficients from Carmichael formula;
- s.R.e. has Ramanujan exact explicit formula:

$$
C_{f, g}(N, a)=\sum_{\ell \leq Q} \frac{\widehat{g}(\ell)}{\varphi(\ell)} \sum_{n \leq N} f(n) c_{\ell}(n) c_{\ell}(a) \forall a \in \mathbf{N}
$$

- s.R.e. is pure \& finite.

Definition: such a s.R.e. is regular.
Remark: Once found the Reef, we'd find the treasure (our's to prove (2) above) !

This is not a joke, but (for reasonable f, g) a consequence:

Corollary 1. Same hypotheses of Theorem 1 give, for $f(n)=\sum_{d \mid n, d \leq D} f^{\prime}(d), \frac{\log D}{\log N}<1-\delta$, with regular s.R.e., whenever f, g satisfy the Ramanujan Conjecture,

$$
C_{f, g}(N, a)=S_{f, g}(a) N+O\left(N^{1-\delta}\right)
$$

Notice "gain", $\delta>0$, in remainder's exponent depends on f.
(In general they both work, for all g, taking $Q=N$ and cut as (1) on arxiv:1709.06445)

The case $f=g=\wedge$ is not covered now (i.e., in II, Cor.1) but in arxiv:1709.06445 we are calculating a-primes ($a=2 k \geq 2$) correlation, from

$$
\sum_{n \leq N} \wedge(n) c_{\ell}(n) \approx \sum_{p \leq N}(\log p) c_{\ell}(p) \sim \mu(\ell) N
$$

($\forall \ell$, apart "few cases", by PNT), in the Reef of a-twin primes. (Btw, $\widehat{\Lambda}(q)=$? See JNT)

Twin primes regularity gives H-L asymptotic! (On arxiv:1709.06445 we need Delange Hp, now even less: see following)

Since regularity is "hard", to prove, we come to "soft", say, hypotheses: work in progress.

Natural question: what can we prove only from " g is of range Q and fair correlation"? These (in Th.m 1), we call "basic hypotheses", give $C_{f, g}(N, a)=\sum_{\ell \leq Q} \widehat{C_{f, g}}(N, Q, \ell) c_{\ell}(a)+\sum_{\substack{d \mid a \\ d>Q}} C_{f, g}^{\prime}(d)$,
by Möbius inversion \& $d \mid a$ formula, with pure "truncated Ramanujan coeff.s":

$$
\widehat{C_{f, g}}(N, Q, \ell) \stackrel{\text { def }}{=} \sum_{\substack{d \leq Q \\ d \equiv 0 \bmod \ell}} \frac{C_{f, g}^{\prime}(d)}{d}
$$

similar to Wintner-Delange formula (for infinite expansions, under hypotheses). Defined Eratosthenes transform of correlation as:

$$
C_{f, g}^{\prime}(d)=C_{f, g}^{\prime}(N, d) \stackrel{\text { def }}{=} \sum_{t \mid d} C_{f, g}(N, t) \mu(d / t)
$$

Then, (4) above, fairness and Carmichael for truncated $\widehat{C_{f, g}}$ (from purity) give $\forall q \in \mathbf{N}$

$$
\widehat{C_{f, g}}(N, Q, q)=\frac{\widehat{g}(q)}{\varphi(q)} \sum_{n \leq N} f(n) c_{q}(n)-L(q),
$$

abbreviating $\forall q \in \mathbf{N}$

$$
L(q) \stackrel{\text { def }}{=} \frac{1}{\varphi(q)} \lim _{x} \frac{1}{x} \sum_{m \leq x} \sum_{d \mid m, d>Q} C_{f, g}^{\prime}(d) c_{q}(m),
$$

notice always exists $\in \mathbf{C}$ and vanishes (as $0-0$) on $q>Q$. In all, $C_{f, g}(N, a)=$

$$
\sum_{q \leq Q}\left(\frac{\widehat{g}(q)}{\varphi(q)} \sum_{n \leq N} f(n) c_{q}(n)-L(q)\right) c_{q}(a)+\sum_{\substack{d \mid a \\ d>Q}} C_{f, g}^{\prime}(d)
$$

comes from " g of range Q and fair correlation".

Well, $L(q)$ is a kind of "grey box", since:

$$
\begin{gathered}
\frac{1}{x} \sum_{m \leq x} \sum_{d \mid m, d>Q} C_{f, g}^{\prime}(d) c_{q}(m) \\
=\sum_{Q<d \leq x} C_{f, g}^{\prime}(d) \cdot \frac{1}{x} \sum_{K \leq \frac{x}{d}} c_{q}(d K) \\
=\sum_{Q<d \leq x} C_{f, g}^{\prime}(d)\left(\frac{\varphi(q)}{d} 1_{q \mid d}+O_{q}\left(\frac{1}{x}\right)\right),
\end{gathered}
$$

from classical exponential sums cancellation. Then "Slow Decay", abbrev. SD, $\mathrm{SD} \quad \sum_{d \leq x}\left|C_{f, g}^{\prime}(d)\right|=o(x), \quad x \rightarrow \infty$
(tantamount to: $\left|C_{f, g}^{\prime}(d)\right|$'s mean-value $=0!$)
is the right further hypothesis to get $L(q)$ and the new "beyond Ramanujan coeff.s":

$$
L(q)=\sum_{\substack{d>Q \\ d \equiv 0 \bmod q}} \frac{C_{f, g}^{\prime}(d)}{d} \stackrel{\text { def }}{=} \lim _{x \rightarrow \infty} \sum_{\substack{Q<d \leq x \\ d \equiv 0 \bmod q}} \frac{C_{f, g}^{\prime}(d)}{d}
$$

This added to $\widehat{C_{f, g}}(N, Q, q)$ above gives the q-th "extended Ramanujan coeff.":

$$
\sum_{d \equiv 0 \bmod q} \frac{C_{f, g}^{\prime}(d)}{d} \stackrel{\text { def }}{=} \lim _{x \rightarrow \infty} \sum_{\substack{d \leq x \\ d \equiv 0 \bmod q}} \frac{C_{f, g}^{\prime}(d)}{d}
$$

where $\exists \mathrm{lim} \in \mathbf{C}$ and $=0$ on $q>Q$, like beyond ones. Extended are Wintner-Delange!

In all, basic hypotheses \& Slow Decay give explicitly Wintner-Delange coefficients

$$
\sum_{d \equiv 0 \bmod \ell} \frac{C_{f, g}^{\prime}(d)}{d}=\frac{\widehat{g}(\ell)}{\varphi(\ell)} \sum_{n \leq N} f(n) c_{\ell}(n)
$$

very easily from above! Short calculations add

$$
\begin{aligned}
C_{f, g}(N, a) & =\sum_{\ell \leq Q} \frac{\widehat{g}(\ell)}{\varphi(\ell)} \sum_{n \leq N} f(n) c_{\ell}(n) c_{\ell}(a) \\
& +\sum_{d>Q} \frac{C_{f, g}^{\prime}(d)}{d} \sum_{\substack{\ell \mid d d \\
\ell>Q}} c_{\ell}(a)
\end{aligned}
$$

See, if we may exchange ℓ, d sums into
$\sum_{d=1}^{\infty} \sum_{\ell \mid d} \frac{C_{f, g}^{\prime}(d)}{d} c_{\ell}(a)=\sum_{\ell=1}^{\infty} \sum_{d \equiv 0 \bmod \ell} \frac{C_{f, g}^{\prime}(d)}{d} c_{\ell}(a)$
then on LHS detecting $\mathbf{1}_{\ell \mid d}=\frac{1}{d} \sum_{\ell \mid d} c_{\ell}(a)$ gives

$$
\sum_{d=1}^{\infty} \frac{C_{f, g}^{\prime}(d)}{d} \sum_{\ell \mid d} c_{\ell}(a)=\sum_{d \mid a} C_{f, g}^{\prime}(d)=C_{f, g}(N, a)
$$

with on RHS the Wintner-Delange coefficients
$\sum_{d \equiv 0 \bmod \ell} \frac{C_{f, g}^{\prime}(d)}{d}=\frac{\widehat{g}(\ell)}{\varphi(\ell)} \sum_{n \leq N} f(n) c_{\ell}(n), \quad \forall \ell \in \mathbf{N}$
thus giving, again, the Reef. Under which hypotheses ? For example, Wintner Assumption:
WA $\quad \sum_{d=1}^{\infty} \frac{\left|C_{f, g}^{\prime}(d)\right|}{d}<\infty$
because (key ingredient: vanishing after Q)

$$
\begin{aligned}
& \sum_{\ell=1}^{\infty} \sum_{d \equiv 0 \bmod \ell} \frac{\left|C_{f, g}^{\prime}(d)\right|}{d} \cdot\left|c_{\ell}(a)\right| \\
\leq & Q \max _{\ell \leq Q}\left|c_{\ell}(a)\right| \sum_{d=1}^{\infty} \frac{\left|C_{f, g}^{\prime}(d)\right|}{d}<\infty
\end{aligned}
$$

\Rightarrow double series abs.convergence, whence ℓ, d exchange. Notice, $W A$ gives the explicit formula for coefficients, based on Carmichael formula; so, the hypotheses of Theorem 1 ensure that Carmichael formula reaches the Reef!

In all: " g of range Q, fair correlation \& WA" \Longrightarrow The Reef!

Actually, under basic hypotheses, WA is the fifth condition to express regularity !

Advantage of WA on other conditions is, of course: "easy check".
(One technical, last comment's : WA $\Longrightarrow S D$)

丁 H A N K S ! ! !

[1] Coppola, G., Murty, M.Ram and Saha, B. - Finite Ramanujan expansions and shifted convolution sums of arithmetical functions - JNT
[2] Coppola, G. and Murty, M.Ram - Finite Ramanujan expansions and shifted convolution sums of arithmetical functions, II to appear on JNT (see arxiv meanwhile)
[3] Coppola, G. - An elementary property of correlations - arxiv:1709.06445

