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Non-vanishing of Dirichlet series

Given a function f : Z ! C, f (n) ⌧ n", we define

D(f , s) :=
1X

n=1

f (n)

ns
. <(s) > 1.

In many cases D can be extended analytically past its domain of
absolute convergence. Often in these cases it’s important to know
whether D(f , 1) = 0.

The most important examples are the cases f (n) = µ(n)nit and
f (n) = �(n), for which is well known that

D( (·)itµ, 1) 6= 0 (prime number theorem)

D(�, 1) 6= 0 (infinitude of primes in arithmetic progressions)
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Chowla’s problem

Chowla asked then the following question:

Problem (Chowla)

Let p be prime and let f : Z ! Q periodic mod p with f 6⌘ 0.
Then D(f , 1) 6= 0.

Notice that if
P

p

a=1

f (a) 6= 0, then D(f , s) has a pole in s = 1.

In 1959 Chowla proved this in the case when

1 f odd

2

p�1

2

prime

3 f : Z ! {±1}
He sent this to Siegel who replied giving an argument which
allowed to remove the conditions 2) and 3), i.e. solving Chowla’s
problem in the case of f odd. Chowla published Siegel’s argument
in 1964 and gave a new simplified argument in 1970.
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Cholwa’s problem

Theorem (Chowla - Siegel)

Let p be prime and let f : Z ! Q odd and periodic mod p with
f 6⌘ 0. Then D(f , 1) 6= 0.

The di↵erence of the cases when f is odd and when f is even (or
neither) can be well understood by the decomposing f into
Dirichlet characters. If f (0) = 0,

P
p

a=1

f (a) = 0 we have

f (n) =
X

�
0

6=� mod p

c� �(n) 8n 2 Z

with c� 2 Q(⇠
p�1

) and ⇠
m

= e2⇡i/m. Also, one has that f is odd
i↵ c� = 0 for all � even and f is even i↵ c� = 0 for all � odd. Also,

D(f , 1) =
X

� mod p

c�L(1,�)
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Chowla’s problem

Now, if � is odd and primitive we have

L(1,�) =
⇡i⌧(�)

p

pX

a=1

�(a)

⇢
a

p

�

and thus L(1,�) 2 ⇡ ·Q(⇠
p

, ⇠
p�1

). If � is even, we have

L(1,�) = A�

X

1<a<p/2

�(a) log ⌘
a

where A� 2 Q for {⌘
a

| 1 < a < p/2} is a set of real
multiplicatively independent units in the cyclotomic field
(Ramachandra).
In particular, the proof of the odd case involves some algebraic
number theory, whereas the proof of the even case is related to
transcendence number theory and in particular to linear forms in
logarithms.
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The general case

Theorem (Baker, Birch, Wirsing - 1973)

Let p be prime and let f : Z ! Q be periodic mod p with f 6⌘ 0.
Then D(f , 1) 6= 0.

Proof (variation from Murty-Murty ’11). We can assume f is not
odd. By the above, we have that

D(1, f ) = ⇡r +
X

�
0

6=� mod p

� even

c�L(1,�)

= ⇡r +
X

1<a<p/2

log ⌘
a

X

�
0

6=� mod p

� even

c�A��(a)

with r 2 Q. By Baker’s theorem the values log ⌘
a

are linearly
independent over Q and are also independent from ⇡ = 1

i

log(�1).
It follows that L = 0 if and only if the inner sum is zero for all �
and this is equivalent to if c�A� = 0 for all � which can’t happen
because f is not odd.
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Consequences

The proof works also if f : Z ! K where K is a number field with
K \Q(⇠

p

) = Q and f is periodic modulo q (not necessary prime)
with f (n) = 0 whenever 1 < (n, q) < q.

Corollary

Let p be prime. Then, the numbers L(1,�), as � varies among
primitive characters mod p, are linearly independent over Q.

Okada ’82 and Chatterjee and Murty ’12: criteria for the case
of non-prime periods.

Murty, Saradha ’07: transcendental values of the digamma
function.

Gun, Murty and Rath ’12: other points beside s = 1.
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A generalization

With B. Martin we considered the following variation:

D
k

(f , s) :=
1X

n=1

d
k

(n)f (n)

ns
<(s) > 1,

where d
k

(n) is the k-th divisor function.

Remark

If f is periodic mod q and k > 1 then D
k

(f , s) is holomorphic at
s = 1 if and only if

P
q

a=1

f (a) = 0 and f (0) = 0.

The case where f is not odd can be tackled in exactly the same
way, but we need a replacement for Baker’s theorem.

Conjecture (Schanuel’s conjecture)

Let z
1

, . . . , z
n

be linearly independent over Q, then
Q(z

1

, . . . , z
n

, ez1 , . . . , ezn) has transcendence degree n.

In particular, if ⌘
1

, . . . , ⌘
r

2 Q are linearly independent then
log ⌘

1

, . . . , log ⌘
r

are algebraically independent.
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A generalization

Proposition

Assume Schanuel’s conjecture. Let p be prime and let f : Z ! Q
be periodic mod p, f not odd. Then D

k

(f , 1) 6= 0.

Thus, the only case open (at least conditionally) is the case of f
odd. X

n2Z
n⌘1 mod 5

d(|n|)
n

= 2
X

n2Z
n⌘2 mod 5

d(|n|)
n

=
4⇡2

25
p
5

In particular, if f is the 5-periodic function with

f (1) = �f (�1) = 1, f (2) = �f (�2) = �2

then D
2

(f , 1) = 0. Similarly, if f is the 13-periodic function with

f (1) = 18a, f (4) = 18b, f (3) = 18c

f (2) = 19a+ 11b + 4c , f (8) = �4a+ 19b + 11c , f (6) = �11a� 4b + 19c

for any a, b, c 2 C, then D
2

(f , 1) = 0.
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A generalization

Theorem (B., Martin ’17)

Let p be prime and V = {f : Z ! Q | f odd and periodic mod p}.
Let V

0

:= {f 2 V | L
k

(1, f ) = 0}. Then,

dimQ(V0

) �
(
dimQ(V ) r�1

r

if v
2

(p � 1) > v
2

(k),

dimQ(V ) r�2

r

if v
2

(p � 1)  v
2

(k),

where r = (k , p � 1) and v
2

(a) denotes the 2-adic valuation of a.

Moreover, the equality holds if (k , p � 1)  2 or if (k , p � 1) = 4
and p ⌘ 5 mod 8. In particular, dim

K

(V
0

) = 0 if and only if
(k , p � 1) = 1 or if (k , p � 1) = 2 and p ⌘ 3 mod 4.

Corollary

Let p be prime with either (k , p � 1)  2 or p ⌘ 5 mod 8 and
(k , p � 1) = 4. Then the set of values L(1,�)k are linearly
independent over Q for � that runs through the odd Dirichlet
characters mod p.
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Sketch of the proof

Let x
k

(r ; p) :=
1

pk

X
*

m

1

,...,m
k

mod p

m

1

···m
k

⌘rmod p

cot
⇣
⇡m

1

p

⌘
· · · cot

⇣
⇡m

k

p

⌘
.

In particular, x
1

(r ; p) = 1

p

cot(⇡r
p

) and

x
2

(r ; p) :=
1

p2

X
*

mmod p

cot
⇣
⇡m

p

⌘
cot
⇣
⇡ rm

p

⌘
.

Proposition

Let k 2 N, p be a prime and r 2 Z with (r , p) = 1. Then

x
k

(r ; p) =
1

2

✓
2

⇡

◆
k X

n2Z
n⌘rmod p

d
k

(|n|)
n

.

In particular, if f : Z ! C is odd and periodic modulo p, then

D
k

(1, f ) = 2
⇣⇡
2

⌘
k

(p�1)/2X

r=1

f (r)x
k

(r ; p).
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Sketch of the proof

Note that ikx
k

(r ; p) 2 Q(⇠
p

). Moreover, given c 2 Z, the action of
the Galois automorphism �

c

: Q(⇠
p

) ! Q(⇠
p

) with ⇠
p

7! ⇠c
p

satisfies
�
c

(ikx
k

(r ; p)) = ikx
k

(ck r ; p).

In particular, if f : Z ! Q is odd with D(1, f ) = 0 then

(p�1)/2X

r=1

f (r)x
k

(r ; p) = 0

Or equivalently, assuming g is a generator of (Z/pZ)⇤,
p�3

2X

j=0

f (g j)x
k

(g j+k`; p) = 0 0  ` <
p � 1

(p � 1, k)

If v
2

(p � 1) > v
2

(k) then we can take 0  ` < p�1

2u

since the

following p�1

2u

equations are just the negative of the first ones.
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Sketch of the proof

Thus, we have a system of p�1

(p�1,k) or p�1

2(p�1,k) equations in p�3

2

variables.
p�3

2X

j=0

f (g j)x
k

(g j+k`; p) = 0 0  ` <
p � 1

(p � 1, k)

Moreover, this system is invariant when applying any
automorphism of Q(⇠

p

). In particular, the space of zeros over Q
has dimension � p�1

2

� p�1

(p�1,k) or � p�1

2

� p�1

2(p�1,k) .

To give a specific example we consider the case k = 2. We have
two possibilities: if p ⌘ 3 mod 4 (i.e. v

2

(p � 1)  v
2

(k)) then we
have a system of p�1

2

equations in p�1

2

variables. If p ⌘ 1 mod 4

(i.e. v
2

(p � 1) > v
2

(k)), then for 0  ` < p�1

4

p�3

4X

j=0

f (g2j)x
k

(g2(`+j); p) +

p�3

4X

j=0

f (g1+2j)x
k

(g1+2(`+j); p) = 0

13 / 20



Sketch of the proof

Thus, we have a system of p�1

(p�1,k) or p�1

2(p�1,k) equations in p�3

2

variables.
p�3

2X

j=0

f (g j)x
k

(g j+k`; p) = 0 0  ` <
p � 1

(p � 1, k)

Moreover, this system is invariant when applying any
automorphism of Q(⇠

p

). In particular, the space of zeros over Q
has dimension � p�1

2

� p�1

(p�1,k) or � p�1

2

� p�1

2(p�1,k) .

To give a specific example we consider the case k = 2. We have
two possibilities: if p ⌘ 3 mod 4 (i.e. v

2

(p � 1)  v
2

(k)) then we
have a system of p�1

2

equations in p�1

2

variables. If p ⌘ 1 mod 4

(i.e. v
2

(p � 1) > v
2

(k)), then for 0  ` < p�1

4

p�3

4X

j=0

f (g2j)x
k

(g2(`+j); p) +

p�3

4X

j=0

f (g1+2j)x
k

(g1+2(`+j); p) = 0

13 / 20



Sketch of the proof

This translate into

(x
k

(g2(i+j); p))
i,j

0

B@
f (g2)

...

f (g
p�3

2

)

1

CA+ (x
k

(g1+2(i+j); p))
i,j

0

B@
f (g)
...

f (g1+

p�3

2 )

1

CA =

0

B@
0
...
0

1

CA

and thus we have to understand

det((x
k

(ga+2(i+j); p))
i ,j p�3

4

) a = 0, 1 for p ⌘ 1 mod 4

det((x
k

(g2(i+j); p))
i ,j p�3

2

) for p ⌘ 3 mod 4

If we can prove that these determinants are non-zero, then one
obtains the equality in the Theorem when k = 2.

Notice that since g2·p�12 = 1 and g2· p�1

4 = �1, then these
matrices are variations of circulant matrices.
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Circulant matrices

Lemma

For m � 1 let

A

+

(v) :=

0

BBBB@

v

0

v

1

. . . v

m�1

v

1

v

2

. . . v

0

.

.

.

.

.

.

.

.

.

v

m�1

v

0

. . . v

m�2

1

CCCCA
A�(v) :=

0

BBBB@

v

0

v

1

. . . v

m�2

v

m�1

v

1

v

2

. . . v

m�1

�v

0

.

.

.

.

.

.

.

.

.

.

.

.

v

m�1

�v

0

. . . �v

m�3

�v

m�2

1

CCCCA
.

Then,

det(A
+

(v)) = (sin(⇡m
2

)� cos(⇡m
2

))
m�1Y

`=0

0

@
m�1X

j=0

v
j

⇠j`
m

1

A ,

det(A�(v)) = (sin(⇡m
2

) + cos(⇡m
2

))
2mY

`=0

` odd

0

@
m�1X

j=0

v
j

⇠j`
2m

1

A .
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Circulant matrices

Applying this to our matrices we find

det((x
k

(ga+2(i+j); p))
i ,j p�3

4

) = (sin(⇡(p�1)

8

) + cos(⇡(p�1)

8

))
2(k�2)(p�1)/4

⇡k(p�1)/4

⇥
(p�1)/2Y

`=0

` odd

⇣
L(1,�`

⇤)
2 + (�1)aL(1, ( ·

p

)�`
⇤)

2

⌘
.

where �⇤ is a generator of the group of characters mod p.
Factoring and using that L(1,�`

⇤) and L(1, ( ·
p

) are linearly
independent over Q(i) it follows that the determinant is non-zero.

det((x
k

(g2(i+j); p))
i ,j p�3

2

) = (�1)(p�3)/4
�

2

⇡2

� p�1

2

p�1Y

`=0

` odd

L(1,�`
⇤)

2

= (�1)(p�3)/4p�
p+3

2 2
3p�7

2 (h�
p

)2

where h�
p

is the relative class number.
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Open problems

Recall that

x
2

(r ; p) =
2

⇡2

X

n2Z
n⌘r mod p

d(|n|)
n

=
1

p2

X
*

m

1

mod p

cot
⇣
⇡m

p

⌘
cot
⇣
⇡ rm

p

⌘
.

Problem

How are the values in the set {x
2

(r ; p) | 1  r < p} distributed as
p ! 1?

Note that it’s fairly easy to compute all the moments of x
2

(r ; p),
but they don’t determine the distribution of x

2

(r ; p).

X

r mod p

x
2

(r ; p)m =

✓
2

⇡2

◆
mX

n�1

d(n)m

nm
+ O

m,"(p
�1+"),
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Open problems

Problem (Erdös)

Let f : Q ! {±1} be periodic mod q. Is true that D
1

(1, f ) 6= 0?

This is (a subcase of) Chowla’s problem when q is prime and it is
known unless q ⌘ 1 mod 4. Okada proved that if q is square-free
D
1

(1, f ) = 0 if and only if

X

n|q1

f (an)

n
= 0 8a s.t. (a, q) = 1

qX

r=1

(r,q)=1

f (r) = 0

Murty and Chatterjee proved that Erdös problem is verified for
> 82% of q ⌘ 1 mod 4.
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Open problems

Problem

What can we say about the function f (X ) defined below?

f (X ) := min

 (����
X

nX

✏
n

n

����

����� ✏n 2 {±1}
)!

.

0 5 10 15 20 25 30
0

100

200

300

400

Figure: Graph of f (n) ⇤ 2n for 1  n  30
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Thanks!
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