Low discriminants for number fields of degree 8 and signature $(2,3)$

Francesco Battistoni

Università degli Studi di Milano

2nd Number Theory Meeting
Torino, 26/10/2017

Introduction

Let K be a number field of degree n and signature $\left(r_{1}, r_{2}\right)$, where

- $r_{1}:=\#$ real embeddings of K.
- $r_{2}:=\#$ couples of complex conjugated embeddings of K.
- $n=r_{1}+2 r_{2}$.

Theorem (Minkowski)

We have the inequality

$$
\sqrt{\left|d_{K}\right|} \geq \frac{n^{n}}{n!}\left(\frac{\pi}{4}\right)^{r_{2}}=: M\left(n, r_{2}\right) \quad \text { (Minkowski's bound) }
$$

where $M\left(n, r_{2}\right)>1$ for $n \geq 2$ and $0 \leq r_{2} \leq\left(n-r_{1}\right) / 2$.

Introduction

Let K be a number field of degree n and signature (r_{1}, r_{2}), where

- $r_{1}:=\#$ real embeddings of K.
- $r_{2}:=\#$ couples of complex conjugated embeddings of K.
- $n=r_{1}+2 r_{2}$.

Theorem (Minkowski)

We have the inequality

$$
\sqrt{\left|d_{K}\right|} \geq \frac{n^{n}}{n!}\left(\frac{\pi}{4}\right)^{r_{2}}=: M\left(n, r_{2}\right) \quad \text { (Minkowski's bound) }
$$

where $M\left(n, r_{2}\right)>1$ for $n \geq 2$ and $0 \leq r_{2} \leq\left(n-r_{1}\right) / 2$.

Corollary

For every number field K of degree ≥ 2 there is a prime number $p \in \mathbb{Z}$ which ramifies in \mathcal{O}_{K}.

The problem of minimum discriminant

- What is the minimum value of $\left|d_{K}\right|$ for a number field K of degree n ? Surely $\left|d_{K}\right| \geq M\left(n, r_{2}\right)^{2}$.
- If n is fixed and r_{1} increases, then also $M\left(n, r_{2}\right)=\frac{n^{n}}{n!}\left(\frac{\pi}{4}\right)^{r_{2}}$ increases.
- What is the minimum value of $\left|d_{K}\right|$ for a number field K of degree n and with r_{1} real embeddings?

The problem of minimum discriminant

- What is the minimum value of $\left|d_{K}\right|$ for a number field K of degree n ? Surely $\left|d_{K}\right| \geq M\left(n, r_{2}\right)^{2}$.
- If n is fixed and r_{1} increases, then also $M\left(n, r_{2}\right)=\frac{n^{n}}{n!}\left(\frac{\pi}{4}\right)^{r_{2}}$ increases.
- What is the minimum value of $\left|d_{K}\right|$ for a number field K of degree n and with r_{1} real embeddings?
- The problem has been solved for $n \leq 7$, with any signature, and for $n=8$, with signature $(8,0)$ or $(0,4)$.
- The minimal case which is not completely known is $n=8$ and $\left(r_{1}, r_{2}\right)=(2,3)$.

Hunter-Pohst-Martinet method

Let K be a number field of degree n, and $\alpha \in \mathcal{O}_{K} \backslash \mathbb{Z}$. Let $f(x):=x^{n}+a_{1} x^{n-1}+\cdots+a_{n-1} x+a_{n}$ be its minimum polynomial. Is it possible to bound the coefficients of $f(x)$ through the discriminant of K ?

Hunter-Pohst-Martinet method

Let K be a number field of degree n, and $\alpha \in \mathcal{O}_{K} \backslash \mathbb{Z}$. Let $f(x):=x^{n}+a_{1} x^{n-1}+\cdots+a_{n-1} x+a_{n}$ be its minimum polynomial. Is it possible to bound the coefficients of $f(x)$ through the discriminant of K ?

- $a_{n}=\mathrm{N}(\alpha)$.
- Symmetric functions: for every $m \in \mathbb{Z}$ define

$$
S_{m}(\alpha):=\sum_{i=1}^{n} \alpha_{i}^{m} .
$$

(where $\alpha_{i}:=\sigma_{i}(\alpha)$). We have the congruence relations

- $a_{1}=-S_{1}(\alpha)=-\operatorname{Tr}(\alpha)$
- $S_{m}=-m a_{m}-\sum_{i=1}^{m-1} a_{m-i} S_{i} \quad$ for $2 \leq m \leq n$.
- $S_{m}=-\sum_{i=1}^{n} a_{i} S_{m-i} \quad$ for $m>n$

The goal is to bound the symmetric functions.

Hunter-Pohst-Martinet method

Define $T_{m}(\alpha):=\sum_{i=1}^{n}\left|\alpha_{i}\right|^{m}$ for every $m \in \mathbb{Z}$ (absolute symmetric functions). Obviously $\left|S_{m}(\alpha)\right| \leq T_{m}(\alpha)$.
The function T_{m} goes from \mathcal{O}_{K} to \mathbb{R}, and T_{2} is a quadratic form on the lattice induced in $\mathbb{R}^{r_{1}+r_{2}}$ by the embeddings.

Hunter-Pohst-Martinet method

Define $T_{m}(\alpha):=\sum_{i=1}^{n}\left|\alpha_{i}\right|^{m}$ for every $m \in \mathbb{Z}$ (absolute symmetric functions). Obviously $\left|S_{m}(\alpha)\right| \leq T_{m}(\alpha)$.
The function T_{m} goes from \mathcal{O}_{K} to \mathbb{R}, and T_{2} is a quadratic form on the lattice induced in $\mathbb{R}^{r_{1}+r_{2}}$ by the embeddings.

Theorem (Hunter-Pohst, 1982)

Let K be a number field of degree n and discriminant d_{K}. Then there exists $\alpha \in \mathcal{O}_{K} \backslash \mathbb{Z}$ such that

$$
\begin{gathered}
0 \leq \operatorname{Tr}(\alpha) \leq \frac{n}{2} \\
T_{2}(\alpha) \leq \frac{(\operatorname{Tr}(\alpha))^{2}}{n}+\gamma_{n-1}\left|\frac{d_{k}}{n}\right|^{1 /(n-1)}=: U_{2}
\end{gathered}
$$

where γ_{n-1} is the $(n-1)$-th Hermite's constant.
Remark: Martinet gave a stronger result when K has proper subfields.

Hunter-Pohst-Martinet method

Theorem

Let $T, N>0$ be such that $N \leq(T / n)^{n / 2}$. Then, $\forall m \in \mathbb{Z} \backslash\{0,2\}$, the function $T_{m}\left(x_{1}, \ldots, x_{n}\right):=\sum_{i=1}^{n} x_{i}^{m}$ has a global maximum over

$$
S:=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: \sum_{i=1}^{n} x_{i}^{2} \leq T, \prod_{i=1}^{n} x_{i}=N, x_{i} \geq 0 \text { for every } i\right\}
$$

and this maximum is attained in a point $\left(y_{1}, \ldots, y_{n}\right) \in S$ with at most two different values for the coordinates.

Hunter-Pohst-Martinet method

Theorem

Let $T, N>0$ be such that $N \leq(T / n)^{n / 2}$. Then, $\forall m \in \mathbb{Z} \backslash\{0,2\}$, the function $T_{m}\left(x_{1}, \ldots, x_{n}\right):=\sum_{i=1}^{n} x_{i}^{m}$ has a global maximum over

$$
S:=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: \sum_{i=1}^{n} x_{i}^{2} \leq T, \prod_{i=1}^{n} x_{i}=N, x_{i} \geq 0 \text { for every } i\right\}
$$

and this maximum is attained in a point $\left(y_{1}, \ldots, y_{n}\right) \in S$ with at most two different values for the coordinates.

Assume $T_{2}(\alpha) \leq T$. For every integer $1 \leq t \leq n-1$ we look for the least positive root of

$$
t\left(y^{t-n} N\right)^{2 / t}+(n-t) y^{2}-T=0
$$

and we call it $y_{1}(t)$. Then, $\forall m \in \mathbb{Z} \backslash\{0,2\}$ one has

$$
T_{m}(\alpha) \leq U_{m}:=\max _{1 \leq t \leq n-1}\left[t\left(y_{1}(t)^{t-n} N\right)^{m / t}+(n-t) y_{1}(t)^{m}\right]
$$

Stark-Odlyzko-Poitou-Serre's method

For every number field K we define the Dedekind Zeta function

$$
\zeta_{K}(s):=\sum_{I \subset \mathcal{O}_{K}} \frac{1}{\mathrm{~N}(I)^{s}}=\prod_{\mathcal{P} \subset \mathcal{O}_{K}}\left(1-\mathrm{N}(\mathcal{P})^{-s}\right)^{-1}
$$

where $\mathrm{N}(I):=\# \mathcal{O}_{K} / I, s \in \mathbb{C}$ and \mathcal{P} ranges are the prime ideals in \mathcal{O}_{K}. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be positive, even, $f(0)=1$, with suitable growth and mean conditions and with positive Fourier transform.

Stark-Odlyzko-Poitou-Serre's method

For every number field K we define the Dedekind Zeta function

$$
\zeta_{K}(s):=\sum_{I \subset \mathcal{O}_{K}} \frac{1}{\mathrm{~N}(I)^{s}}=\prod_{\mathcal{P} \subset \mathcal{O}_{K}}\left(1-\mathrm{N}(\mathcal{P})^{-s}\right)^{-1}
$$

where $N(I):=\# \mathcal{O}_{K} / I, s \in \mathbb{C}$ and \mathcal{P} ranges are the prime ideals in \mathcal{O}_{K}. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be positive, even, $f(0)=1$, with suitable growth and mean conditions and with positive Fourier transform.

Lemma

For K of degree n and signature $\left(r_{1}, r_{2}\right)$, for every $y>0$, we have:

$$
\begin{aligned}
\frac{1}{n} \log \left|d_{K}\right| & \geq \gamma+\log (4 \pi)+\frac{r_{1}}{n} \\
& -\int_{0}^{\infty}(1-f(x \sqrt{y}))\left(\frac{1}{\sinh (x)}+\frac{r_{1}}{n} \frac{1}{2 \cosh ^{2}(x / 2)}\right) d x \\
& -\frac{4}{n} \int_{0}^{\infty} f(x \sqrt{y}) d x+\frac{4}{n} \sum_{\mathcal{P}, m} \frac{\log (\mathrm{~N}(\mathcal{P}))}{1+\left(N(\mathcal{P})^{m}\right)} f(m \log N(\mathcal{P}) \sqrt{y}) .
\end{aligned}
$$

Local corrections

- Best known choice for f (Tartar, 1973):

$$
f(x):=\left(\frac{3}{x^{3}}(\sin (x)-x \cos (x))\right)^{2}
$$

the square of the Fourier transform of $u(x):=\left(1-x^{2}\right) \chi_{|x| \leq 1}(x)$.

- The presence of a prime ideal \mathcal{P} gives a local correction to the lower bound.

Local corrections

- Best known choice for f (Tartar, 1973):

$$
f(x):=\left(\frac{3}{x^{3}}(\sin (x)-x \cos (x))\right)^{2}
$$

the square of the Fourier transform of $u(x):=\left(1-x^{2}\right) \chi_{|x| \leq 1}(x)$.

- The presence of a prime ideal \mathcal{P} gives a local correction to the lower bound.
- Selmane (1999) used this inequality to compute the following lower bounds for $\left|d_{K}\right|$, whenever K has $n=8,\left(r_{1}, r_{2}\right)=(2,3)$ and admits a prime ideal \mathcal{P} of norm $\mathrm{N}(\mathcal{P})$:

$\mathrm{N}(\mathcal{P})$	$\left\|d_{K}\right\|>$
2	11725962
3	8336752
4	6688609
5	5726300
7	4682934.

The main goal

We want to detect every number field with $n=8$, signature $(2,3)$ and $\left|d_{K}\right| \leq 5726300$. The idea is to range all the possible values for the symmetric functions S_{m} in the intervals [$-U_{m}, U_{m}$], and use them to create the polynomials $p(x)$, which subsequently must be examined. There are some preliminary issues to underline:

The main goal

We want to detect every number field with $n=8$, signature $(2,3)$ and $\left|d_{K}\right| \leq 5726300$. The idea is to range all the possible values for the symmetric functions S_{m} in the intervals [$-U_{m}, U_{m}$], and use them to create the polynomials $p(x)$, which subsequently must be examined. There are some preliminary issues to underline:

- The polynomials must be monic and we set an integer value between 0 and -4 for a_{1} (remember that $a_{1}=-\operatorname{Tr}(\alpha)$).
- We set $T:=U_{2}$ and $N:=\left|a_{8}\right|=|N(\alpha)|$ such that $N \leq\left(U_{2} / 8\right)^{4}$ (arithmetical-geometrical means inequality).
By Selmane's estimates, N cannot be an exact multiple of $2,3,4$ or 5 .
One verifies that $N=1$ (unless $a_{1}=-3,-4$, in this case also $N=7,8,9$ are admissible).

The main goal

We want to detect every number field with $n=8$, signature $(2,3)$ and $\left|d_{K}\right| \leq 5726300$. The idea is to range all the possible values for the symmetric functions S_{m} in the intervals [$-U_{m}, U_{m}$], and use them to create the polynomials $p(x)$, which subsequently must be examined. There are some preliminary issues to underline:

- The polynomials must be monic and we set an integer value between 0 and -4 for a_{1} (remember that $a_{1}=-\operatorname{Tr}(\alpha)$).
- We set $T:=U_{2}$ and $N:=\left|a_{8}\right|=|N(\alpha)|$ such that $N \leq\left(U_{2} / 8\right)^{4}$ (arithmetical-geometrical means inequality).
By Selmane's estimates, N cannot be an exact multiple of $2,3,4$ or 5 .
One verifies that $N=1$ (unless $a_{1}=-3,-4$, in this case also $N=7,8,9$ are admissible).
- The procedure may miss the minimum polynomial of a field with proper subfields; but these fields are already classified by Algorithmic Class Field Theory and Martinet's Theorem (in fact, we detect them anyway).

Algorithmic steps

From now on, we assume $N=1$, and that all the polynomials evaluated in 1 return an odd number.

Algorithmic steps

From now on, we assume $N=1$, and that all the polynomials evaluated in 1 return an odd number.
0) Given S_{1}, we have $a_{1}=-S_{1}$.

We set the value for U_{2} and then compute the bounds U_{m} for the absolute symmetric functions. We have then the intervals $\left[-U_{m}, U_{m}\right]$ (with $m \in\{2, \ldots, 8\}$ and $m \in\{-1,-2\}$). Select $a_{8} \in\{-1,1\}$.

Algorithmic steps

From now on, we assume $N=1$, and that all the polynomials evaluated in 1 return an odd number.
$0)$ Given S_{1}, we have $a_{1}=-S_{1}$.
We set the value for U_{2} and then compute the bounds U_{m} for the absolute symmetric functions. We have then the intervals $\left[-U_{m}, U_{m}\right]$ (with $m \in\{2, \ldots, 8\}$ and $m \in\{-1,-2\}$). Select $a_{8} \in\{-1,1\}$.

1) Let S_{2} be the maximum positive integer in $\left[-U_{2}, U_{2}\right]$ such that $S_{2}=-a_{1} S_{1} \bmod 2$. Then put $a 2=\left(-S_{2}-a_{1} S_{1}\right) / 2$.
Call S_{3} the maximum positive integer in $\left[-U_{3}, U_{3}\right]$ such that $S_{3}=-a_{1} S_{2}-a_{2} S_{1} \bmod 3$. Then put $a_{3}:=\left(-S_{3}-a_{1} S_{2}-a_{2} S_{1}\right) / 3$.
Do the same for S_{4} up to S_{7}, creating a_{4} up to a_{7}. Let $p(x):=x^{8}+a_{1} x^{7}+a_{2} x^{6}+a_{3} x^{5}+a_{4} x^{4}+a_{5} x^{3}+a_{6} x^{2}+a_{7} x+a_{8}$ be the polynomial to be checked.
Remark: If $p(1)$ is even, discard this polynomial and create the next by increasing a_{7} of 1 (and so decreasing S_{7} of 7).

Algorithmic steps

2) Before saying how to check $p(x)$, let us show how to go on the next polynomial.

- To create the next polynomial, one just has to increase a_{7} of 2 , decreasing then S_{7} of 14 , and keeping the previous coefficients.
- Check and repeat this way until $S_{7}<-U_{7}$: then increase a_{6} of 1 and decrease S_{6} of 6 , and compute a new S_{7} and a new a_{7}, for which you can repeat what explained before.
- Do so until $S_{6}<-U_{6}$: then increase a_{5} of 1 , decreasing S_{5} of 5 , and compute new S_{6}, a_{6}, S_{7} and a_{7}. Then repeat the previous steps.
- And so on for every S_{m}, until $S_{m}<-U_{m}$ (with $m \geq 2$).

Algorithmic steps

2) Before saying how to check $p(x)$, let us show how to go on the next polynomial.

- To create the next polynomial, one just has to increase a_{7} of 2 , decreasing then S_{7} of 14 , and keeping the previous coefficients.
- Check and repeat this way until $S_{7}<-U_{7}$: then increase a_{6} of 1 and decrease S_{6} of 6 , and compute a new S_{7} and a new a_{7}, for which you can repeat what explained before.
- Do so until $S_{6}<-U_{6}$: then increase a_{5} of 1 , decreasing S_{5} of 5 , and compute new S_{6}, a_{6}, S_{7} and a_{7}. Then repeat the previous steps.
- And so on for every S_{m}, until $S_{m}<-U_{m}$ (with $m \geq 2$).

During the construction of the S_{m} 's one can already check the following:

- If $a_{1}=0$, then $S_{3} \geq 0$.
- $S_{2} \geq-U_{2}+\frac{2}{n} a_{1}^{2}$
- $\left|S_{3}\right| \leq\left(\frac{S_{2}+T}{2}\left(S_{4}+2\left(T-S_{2}\right)^{2}\right)\right)^{1 / 2}$.
- $S_{4} \geq-2\left(T-S_{2}\right)^{2}$.

Algorithmic steps

3) If $p(x)$ misses one of the following conditions, then it has to be discarded.

- $|p(1)|=|\mathrm{N}(\alpha-1)| \leq\left(\left(U_{2}-2 S_{1}+8\right) / 8\right)^{4}$ and it must be an admissible norm for a field with $\left|d_{K}\right| \leq 5726300$.
- $|p(-1)|=|\mathrm{N}(\alpha+1)| \leq\left(\left(U_{2}+2 S_{1}+8\right) / 8\right)^{4}$ and it must be an admissible norm for a field with $\left|d_{K}\right| \leq 5726300$.

Algorithmic steps

3) If $p(x)$ misses one of the following conditions, then it has to be discarded.

- $|p(1)|=|\mathrm{N}(\alpha-1)| \leq\left(\left(U_{2}-2 S_{1}+8\right) / 8\right)^{4}$ and it must be an admissible norm for a field with $\left|d_{K}\right| \leq 5726300$.
- $|p(-1)|=|\mathrm{N}(\alpha+1)| \leq\left(\left(U_{2}+2 S_{1}+8\right) / 8\right)^{4}$ and it must be an admissible norm for a field with $\left|d_{K}\right| \leq 5726300$.
- $-a_{7} / a_{8}=S_{-1} \in\left[-U_{-1}, U_{-1}\right]$ and $\left(a_{7}^{2} / a_{8}-2 a_{6}\right) / a_{8}=S_{-2} \in\left[-U_{-2}, U_{-2}\right]$.
- $p(2), p(-2), p(3), p(-3), p(4), p(-4), p(5), p(-5)$ must be admissible norms.
- $-8 a_{8}-S_{1} a_{7}-S_{2} a_{6}-S_{3} a_{5}-S_{4} a_{4}-S_{5} a_{3}-S_{6} a_{2}-S_{7} a_{1}=S_{8} \in\left[-U_{8}, U_{8}\right]$.

If $p(x)$ satisfies every condition, then it is saved.

Algorithmic steps

Remark: Further conditions could be set, but it was not done in order to guarantee a reasonable time of computation (the worst case scenario, when $S_{1}=4$, takes less than two hours). All these computations were done in MATLAB.

Algorithmic steps

Remark: Further conditions could be set, but it was not done in order to guarantee a reasonable time of computation (the worst case scenario, when $S_{1}=4$, takes less than two hours).
All these computations were done in MATLAB.
4) The .mat files are then translated into .gp files and read by PARI/GP. For every polynomial $p(x)$ left, one finally checks if:

- $p(x)$ is irreducible.
- The discriminant d_{k} of the number field generated by $p(x)$ is negative (remember that $r_{2}=3$).
- $d_{K} \geq-5726300$.

5) The few polynomials remaining define number fields which are classified via their isomorphism classes (with the command nfisisom() in PARI/GP).

Results

We applied the algorithm for every possible choice of $p(1)(\bmod 2), N$ and S_{1}, verifying 40 different cases.

Results

We applied the algorithm for every possible choice of $p(1)(\bmod 2), N$ and S_{1}, verifying 40 different cases.

Theorem (B.)

Let d_{K} be the discriminant of a number field K with degree 8 and signature $(2,3)$. Then the minimum value of $\left|d_{K}\right|$ is equal to 4286875.

Theorem (B.)

There are 56 number fields of degree 8 and signature $(2,3)$ with $\left|d_{K}\right| \leq 5726300$; with the exception of two non-isomorphic fields with $\left|d_{K}\right|=5365963$, every field in the list is uniquely characterized by the value of $\left|d_{K}\right|$.

$-d_{K}$	Factorization	$f(x)$
4286875	$5^{4} \cdot 19$	$x^{8}-3 x^{7}-x^{6}+7 x^{5}+3 x^{4}-6 x^{3}-4 x^{2}+x+1$
4296211	$199 \cdot 21589$	$x^{8}-x^{7}+3 x^{5}-4 x^{4}+2 x^{3}+2 x^{2}-3 x+1$
4297507	$2011 \cdot 2137$	$x^{8}-2 x^{6}-x^{5}-x^{3}+2 x^{2}+x-1$
4364587	$29 \cdot 150503$	$x^{8}-3 x^{6}-3 x^{5}+4 x^{4}+7 x^{3}-2 x^{2}-4 x-1$
4386467	$41 \cdot 83 \cdot 1289$	$x^{8}+4 x^{6}-2 x^{5}+3 x^{4}-5 x^{3}+x^{2}-2 x+1$
4421387	$1321 \cdot 3347$	$x^{8}-x^{6}-x^{5}+2 x^{4}-x^{3}-2 x^{2}+2 x-1$
4423907	prime	$x^{8}-2 x^{5}-5 x^{4}-5 x^{3}-5 x^{2}-2 x-1$
4456891	prime	$x^{8}-3 x^{6}-3 x^{5}+5 x^{4}+6 x^{3}-2 x^{2}-4 x-1$
4461875	$5^{4} \cdot 11^{2} \cdot 59$	$x^{8}-x^{7}+x^{6}+2 x^{5}-2 x^{4}+2 x^{2}-x-1$
4505651	prime	$x^{8}-3 x^{6}-3 x^{5}+5 x^{4}+4 x^{3}-3 x^{2}-x+1$
4542739	prime	$x^{8}-4 x^{6}-3 x^{5}+6 x^{4}+7 x^{3}-x^{2}-4 x-1$
4570091	$1249 \cdot 3659$	$x^{8}-x^{6}-x^{5}+x^{4}-x^{3}-2 x^{2}+x+1$
4570723	prime	$x^{8}-2 x^{7}+x^{6}+3 x^{5}-5 x^{4}-3 x^{3}+4 x^{2}+x-1$
4584491	$19 \cdot 101 \cdot 2389$	$x^{8}-3 x^{6}-x^{5}+3 x^{4}+4 x^{3}-x^{2}-3 x-1$
4596992	$2^{8} \cdot 17957$	$x^{8}-3 x^{6}-2 x^{5}+3 x^{4}-x^{2}+2 x-1$

$-d_{K}$	Factorization	$f(x)$
4603987	prime	$x^{8}-x^{7}-4 x^{6}-3 x^{5}+3 x^{4}+8 x^{3}+8 x^{2}+4 x+1$
4614499	prime	$x^{8}-x^{6}-3 x^{5}+x^{4}+2 x^{3}-x^{2}+x+1$
4616192	$2^{22} \cdot 7^{2} \cdot 23$	$x^{8}-2 x^{6}-2 x^{5}+2 x^{4}+4 x^{3}+x^{2}-2 x-1$
4623371	$17 \cdot 31^{2} \cdot 283$	$x^{8}+x^{6}-x^{3}-x^{2}-1$
4648192	$2^{8} \cdot 67 \cdot 271$	$x^{8}-x^{6}-2 x^{5}-2 x^{4}+2 x^{2}+2 x+1$
4663051	$31 \cdot 359 \cdot 419$	$x^{8}-x^{7}+x^{6}-3 x^{5}+7 x^{4}-6 x^{3}+x^{2}+2 x-1$
4690927	$443 \cdot 10589$	$x^{8}-4 x^{6}-4 x^{5}+3 x^{4}+6 x^{3}-x^{2}-3 x+1$
4711123	$43 \cdot 331^{2}$	$x^{8}+2 x^{6}-7 x^{5}-4 x^{4}-9 x^{3}+9 x^{2}+6 x+1$
4725251	$59 \cdot 283^{2}$	$x^{8}-4 x^{6}-2 x^{5}+7 x^{4}+5 x^{3}-3 x^{2}-4 x-1$
4761667	$23 \cdot 207029$	$x^{8}-3 x^{6}-2 x^{5}-2 x^{4}+3 x^{3}+9 x^{2}+6 x+1$
4775363	$1931 \cdot 2473$	$x^{8}-6 x^{6}-2 x^{5}+9 x^{4}+x^{3}-5 x^{2}+1$
4785667	$29 \cdot 59 \cdot 2797$	$x^{8}-x^{5}-4 x^{4}-3 x^{3}+2 x^{2}+3 x+1$
4809907	$19 \cdot 253153$	$x^{8}-4 x^{6}-x^{5}+5 x^{4}+x^{3}-x^{2}-x-1$
4858379	$17^{2} \cdot 16811$	$x^{8}+3 x^{6}-x^{5}+2 x^{4}-3 x^{3}-2 x+1$
4931267	$11 \cdot 67 \cdot 6691$	$x^{8}-x^{6}-x^{5}-6 x^{4}-2 x^{3}+17 x^{2}-8 x+1$
4960000	$2^{8} \cdot 5^{4} \cdot 31$	$x^{8}-x^{6}-6 x^{5}+6 x^{4}-2 x^{3}+8 x^{2}-6 x+1$

$-d_{K}$
5040467
5040547
5103467
5107019
5118587 29.176503
$5149367 \quad 47 \cdot 331^{2}$
$5155867449 \cdot 11483$
$5165819641 \cdot 8059$
5204491
5233147
$5272027317 \cdot 16631$
5286727 prime
5293867 227.23321
$5344939 \quad 521 \cdot 10259$
5346947 839.6373
5359051 prime
Factorization

$$
\begin{gathered}
f(x) \\
x^{8}-5 x^{6}-3 x^{5}+6 x^{4}+4 x^{3}-3 x^{2}-2 x+1 \\
x^{8}-2 x^{6}+3 x^{4}-3 x^{3}-3 x^{2}+4 x+1 \\
x^{8}-5 x^{6}-x^{5}+8 x^{4}+2 x^{3}-4 x^{2}-x+1 \\
x^{8}-3 x^{6}-3 x^{5}+3 x^{4}+9 x^{3}+6 x^{2}+x-1 \\
x^{8}-2 x^{6}-5 x^{5}-6 x^{4}+11 x^{3}+20 x^{2}+9 x+1 \\
x^{8}-2 x^{6}-2 x^{5}+8 x^{4}-2 x^{3}-5 x^{2}+4 x-1 \\
x^{8}-3 x^{6}-x^{5}+3 x^{4}+x^{3}-2 x^{2}-x+1 \\
x^{8}-6 x^{6}-5 x^{5}+5 x^{4}+9 x^{3}+6 x^{2}+2 x+1 \\
x^{8}-6 x^{6}-7 x^{5}+8 x^{4}+19 x^{3}+15 x^{2}+6 x+1 \\
x^{8}+2 x^{6}-x^{5}-11 x^{4}-9 x^{3}+2 x^{2}+4 x+1 \\
x^{8}+x^{6}-7 x^{5}+6 x^{4}-4 x^{3}+5 x^{2}-4 x+1 \\
x^{8}-4 x^{6}+5 x^{4}-3 x^{2}-x+1 \\
x^{8}-4 x^{6}-x^{5}+8 x^{4}+5 x^{3}-6 x^{2}-5 x+1 \\
x^{8}-5 x^{6}-4 x^{5}+5 x^{4}+16 x^{3}+5 x^{2}-6 x+1 \\
x^{8}-6 x^{6}-3 x^{5}+9 x^{4}+7 x^{3}+x^{2}+x+1 \\
x^{8}-4 x^{6}-3 x^{5}+3 x^{4}+11 x^{3}+10 x^{2}+4 x+1
\end{gathered}
$$

$-d_{K}$	Factorization	$f(x)$
5365963	$67 \cdot 283^{2}$	$x^{8}-x^{6}-2 x^{5}+5 x^{3}+5 x^{2}+4 x+1$
5365963	$67 \cdot 283^{2}$	$x^{8}-3 x^{5}-5 x^{4}-5 x^{3}+11 x^{2}-x+1$
5369375	$5^{4} \cdot 11^{2} \cdot 71$	$x^{8}+4 x^{6}-6 x^{5}+6 x^{4}-12 x^{3}-7 x^{2}-6 x+1$
5371171	$13 \cdot 413167$	$x^{8}-x^{6}-5 x^{5}+2 x^{4}+9 x^{2}-6 x+1$
5420747	prime	$x^{8}-5 x^{6}-4 x^{5}+5 x^{4}+8 x^{3}+5 x^{2}+2 x+1$
5525731	$17 \cdot 325043$	$x^{8}-5 x^{6}-3 x^{5}+3 x^{4}-2 x^{3}-8 x^{2}-4 x+1$
5635607	$61 \cdot 92387$	$x^{8}+2 x^{6}-5 x^{5}-6 x^{4}+8 x^{3}+2 x^{2}-4 x+1$
5671691	$193 \cdot 29387$	$x^{8}-3 x^{6}-3 x^{5}+4 x^{4}+3 x^{3}-2 x^{2}+1$
5697179	prime	$x^{8}+x^{6}-8 x^{4}-3 x^{3}+5 x^{2}+2 x+1$

Final Remarks

- Almost every polynomial survived to the test was with $N=1$ and $p(1)$ odd. There were few with $N=1$ and $p(1)$ even. No polynomials with $N>1$ survived to the tests.

Final Remarks

- Almost every polynomial survived to the test was with $N=1$ and $p(1)$ odd. There were few with $N=1$ and $p(1)$ even. No polynomials with $N>1$ survived to the tests.
- Every number field detected was already contained in the Number Fields Database http://galoisdb.math.upb.de provided by Jüergen Klüners and Gunter Malle (but not in LMFDB). However, they explicitly made no claim of complete classification.

Final Remarks

- Almost every polynomial survived to the test was with $N=1$ and $p(1)$ odd. There were few with $N=1$ and $p(1)$ even. No polynomials with $N>1$ survived to the tests.
- Every number field detected was already contained in the Number Fields Database http://galoisdb.math.upb.de provided by Jüergen Klüners and Gunter Malle (but not in LMFDB). However, they explicitly made no claim of complete classification.
- Actually, all the minimum polynomials were found in a previous attempt with $\left|d_{K}\right| \leq 5000000$. This suggests that this method is somehow too coarse.

Thank you for your attention.

