Low discriminants for number fields of degree 8 and signature (2,3)

Francesco Battistoni

Università degli Studi di Milano

2nd Number Theory Meeting Torino, 26/10/2017

< □ ▶

500

Introduction

Let K be a number field of degree n and signature (r_1, r_2) , where

- $r_1 := \#$ real embeddings of K.
- $r_2 := \#$ couples of complex conjugated embeddings of K.
- $n = r_1 + 2r_2$.

Theorem (Minkowski)

We have the inequality

$$\sqrt{|d_{\mathcal{K}}|} \geq \frac{n^n}{n!} \left(\frac{\pi}{4}\right)^{r_2} =: M(n, r_2)$$
 (Minkowski's bound)

where $M(n, r_2) > 1$ for $n \ge 2$ and $0 \le r_2 \le (n - r_1)/2$.

JQ C

<ロト < 同ト < 臣ト < 臣ト 三臣

Introduction

Let K be a number field of degree n and signature (r_1, r_2) , where

- $r_1 := \#$ real embeddings of K.
- $r_2 := \#$ couples of complex conjugated embeddings of K.
- $n = r_1 + 2r_2$.

Theorem (Minkowski)

We have the inequality

$$\sqrt{|d_{\mathcal{K}}|} \geq \frac{n^n}{n!} \left(\frac{\pi}{4}\right)^{r_2} =: M(n, r_2)$$
 (Minkowski's bound)

where $M(n, r_2) > 1$ for $n \ge 2$ and $0 \le r_2 \le (n - r_1)/2$.

Corollary

For every number field K of degree ≥ 2 there is a prime number $p \in \mathbb{Z}$ which ramifies in \mathcal{O}_{K} .

F.Battistoni (Unimi)

- What is the minimum value of $|d_K|$ for a number field K of degree n? Surely $|d_K| \ge M(n, r_2)^2$.
- If *n* is fixed and r_1 increases, then also $M(n, r_2) = \frac{n^n}{n!} \left(\frac{\pi}{4}\right)^{r_2}$ increases.
- What is the minimum value of $|d_K|$ for a number field K of degree n and with r_1 real embeddings?

SQ Q

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- What is the minimum value of |d_K| for a number field K of degree n? Surely |d_K| ≥ M(n, r₂)².
- If *n* is fixed and r_1 increases, then also $M(n, r_2) = \frac{n^n}{n!} \left(\frac{\pi}{4}\right)^{r_2}$ increases.
- What is the minimum value of $|d_K|$ for a number field K of degree n and with r_1 real embeddings?
- The problem has been solved for $n \le 7$, with any signature, and for n = 8, with signature (8,0) or (0,4).
- The minimal case which is not completely known is n = 8 and $(r_1, r_2) = (2, 3)$.

500

◆□▶ ◆掃▶ ◆臣▶ ◆臣▶ ─ 臣

Let *K* be a number field of degree *n*, and $\alpha \in \mathcal{O}_K \setminus \mathbb{Z}$. Let $f(x) := x^n + a_1 x^{n-1} + \cdots + a_{n-1} x + a_n$ be its minimum polynomial. Is it possible to bound the coefficients of f(x) through the discriminant of *K*?

JQ C

《曰》《部》《臣》《臣》 [] 臣

Let *K* be a number field of degree *n*, and $\alpha \in \mathcal{O}_K \setminus \mathbb{Z}$. Let $f(x) := x^n + a_1 x^{n-1} + \cdots + a_{n-1} x + a_n$ be its minimum polynomial. Is it possible to bound the coefficients of f(x) through the discriminant of *K*?

- $a_n = \mathsf{N}(\alpha)$.
- Symmetric functions: for every $m \in \mathbb{Z}$ define

$$S_m(\alpha) := \sum_{i=1}^n \alpha_i^m.$$

(where $\alpha_i := \sigma_i(\alpha)$). We have the congruence relations

•
$$a_1 = -S_1(\alpha) = -\operatorname{Tr}(\alpha)$$

• $S_m = -ma_m - \sum_{i=1}^{m-1} a_{m-i}S_i$ for $2 \le m \le n$.

• $S_m = -\sum_{i=1}^n a_i S_{m-i}$ for m > n

The goal is to bound the symmetric functions.

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ ▲□ ● のへで

Define $T_m(\alpha) := \sum_{i=1}^n |\alpha_i|^m$ for every $m \in \mathbb{Z}$ (absolute symmetric functions). Obviously $|S_m(\alpha)| \leq T_m(\alpha)$.

The function T_m goes from \mathcal{O}_K to \mathbb{R} , and T_2 is a quadratic form on the lattice induced in $\mathbb{R}^{r_1+r_2}$ by the embeddings.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで

Define $T_m(\alpha) := \sum_{i=1}^n |\alpha_i|^m$ for every $m \in \mathbb{Z}$ (absolute symmetric functions). Obviously $|S_m(\alpha)| \leq T_m(\alpha)$. The function T_m goes from \mathcal{O}_K to \mathbb{R} , and T_2 is a quadratic form on the lattice induced in $\mathbb{R}^{r_1+r_2}$ by the embeddings.

Theorem (Hunter-Pohst, 1982)

Let K be a number field of degree n and discriminant d_K . Then there exists $\alpha \in \mathcal{O}_K \setminus \mathbb{Z}$ such that

$$0 \leq \operatorname{Tr}(\alpha) \leq \frac{n}{2},$$

$$T_2(\alpha) \leq \frac{(\operatorname{Tr}(\alpha))^2}{n} + \gamma_{n-1} \left| \frac{d_k}{n} \right|^{1/(n-1)} =: U_2$$

where γ_{n-1} is the (n-1)-th Hermite's constant.

Remark: Martinet gave a stronger result when K has proper subfields.

F.Battistoni (Unimi)

SQ P

Theorem

Let T, N > 0 be such that $N \leq (T/n)^{n/2}$. Then, $\forall m \in \mathbb{Z} \setminus \{0, 2\}$, the function $T_m(x_1, \ldots, x_n) := \sum_{i=1}^n x_i^m$ has a global maximum over

$$S := \{(x_1, \dots, x_n) \in \mathbb{R}^n : \sum_{i=1}^n x_i^2 \le T, \prod_{i=1}^n x_i = N, x_i \ge 0 \text{ for every } i\}$$

and this maximum is attained in a point $(y_1, \ldots, y_n) \in S$ with at most two different values for the coordinates.

SQA

Theorem

Let T, N > 0 be such that $N \leq (T/n)^{n/2}$. Then, $\forall m \in \mathbb{Z} \setminus \{0, 2\}$, the function $T_m(x_1, \ldots, x_n) := \sum_{i=1}^n x_i^m$ has a global maximum over

$$S := \{(x_1, \dots, x_n) \in \mathbb{R}^n : \sum_{i=1}^n x_i^2 \le T, \prod_{i=1}^n x_i = N, x_i \ge 0 \text{ for every } i\}$$

and this maximum is attained in a point $(y_1, \ldots, y_n) \in S$ with at most two different values for the coordinates.

Assume $T_2(\alpha) \leq T$. For every integer $1 \leq t \leq n-1$ we look for the least positive root of

$$t(y^{t-n}N)^{2/t} + (n-t)y^2 - T = 0$$

and we call it $y_1(t)$. Then, $\forall m \in \mathbb{Z} \setminus \{0,2\}$ one has

$$T_m(\alpha) \le U_m := \max_{1 \le t \le n-1} [t(y_1(t)^{t-n}N)^{m/t} + (n-t)y_1(t)^m].$$

500

Stark-Odlyzko-Poitou-Serre's method

For every number field K we define the **Dedekind Zeta function**

$$\zeta_{\mathcal{K}}(s) := \sum_{I \subset \mathcal{O}_{\mathcal{K}}} \frac{1}{\mathsf{N}(I)^{s}} = \prod_{\mathcal{P} \subset \mathcal{O}_{\mathcal{K}}} \left(1 - \mathsf{N}(\mathcal{P})^{-s}\right)^{-1}$$

where $N(I) := \#\mathcal{O}_{\mathcal{K}}/I$, $s \in \mathbb{C}$ and \mathcal{P} ranges are the prime ideals in $\mathcal{O}_{\mathcal{K}}$. Let $f : \mathbb{R} \to \mathbb{R}$ be positive, even, f(0) = 1, with suitable growth and mean conditions and with positive Fourier transform.

SQA

Stark-Odlyzko-Poitou-Serre's method

For every number field K we define the **Dedekind Zeta function**

$$\zeta_{\mathcal{K}}(s) := \sum_{I \subset \mathcal{O}_{\mathcal{K}}} \frac{1}{\mathsf{N}(I)^{s}} = \prod_{\mathcal{P} \subset \mathcal{O}_{\mathcal{K}}} \left(1 - \mathsf{N}(\mathcal{P})^{-s}\right)^{-1}$$

where $N(I) := \#\mathcal{O}_K/I$, $s \in \mathbb{C}$ and \mathcal{P} ranges are the prime ideals in \mathcal{O}_K . Let $f : \mathbb{R} \to \mathbb{R}$ be positive, even, f(0) = 1, with suitable growth and mean conditions and with positive Fourier transform.

Lemma

For K of degree n and signature (r_1, r_2) , for every y > 0, we have:

$$\begin{aligned} \frac{1}{n} \log |d_{\mathcal{K}}| &\geq \gamma + \log(4\pi) + \frac{r_1}{n} \\ &- \int_0^\infty (1 - f(x\sqrt{y})) \left(\frac{1}{\sinh(x)} + \frac{r_1}{n} \frac{1}{2\cosh^2(x/2)} \right) dx \\ &- \frac{4}{n} \int_0^\infty f(x\sqrt{y}) dx + \frac{4}{n} \sum_{\mathcal{P},m} \frac{\log(\mathsf{N}(\mathcal{P}))}{1 + (\mathsf{N}(\mathcal{P})^m)} f(m\log\mathsf{N}(\mathcal{P})\sqrt{y}). \end{aligned}$$

F.Battistoni (Unimi)

Local corrections

• Best known choice for *f* (Tartar, 1973):

$$f(x) := \left(\frac{3}{x^3}(\sin(x) - x\cos(x))\right)^2$$

the square of the Fourier transform of $u(x) := (1 - x^2)\chi_{|x| \le 1}(x)$.

• The presence of a prime ideal \mathcal{P} gives a **local correction** to the lower bound.

< □ ▶

SQA

- < ≣ ▶ < ≣ ▶

Local corrections

• Best known choice for *f* (Tartar, 1973):

$$f(x) := \left(\frac{3}{x^3}(\sin(x) - x\cos(x))\right)^2$$

the square of the Fourier transform of $u(x) := (1 - x^2)\chi_{|x| \le 1}(x)$.

- The presence of a prime ideal \mathcal{P} gives a **local correction** to the lower bound.
- Selmane (1999) used this inequality to compute the following lower bounds for |d_K|, whenever K has n = 8, (r₁, r₂) = (2,3) and admits a prime ideal P of norm N(P):

$N(\mathcal{P})$	$ d_{\mathcal{K}} >$
2	11725962
3	8336752
4	6688609
5	5726300
7	4682934.

SQA

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The main goal

We want to detect every number field with n = 8, signature (2,3) and $|d_{\mathcal{K}}| \leq 5726300$. The idea is to range all the possible values for the symmetric functions S_m in the intervals $[-U_m, U_m]$, and use them to create the polynomials p(x), which subsequently must be examined. There are some preliminary issues to underline:

SQ P

The main goal

We want to detect every number field with n = 8, signature (2,3) and $|d_{\mathcal{K}}| \leq 5726300$. The idea is to range all the possible values for the symmetric functions S_m in the intervals $[-U_m, U_m]$, and use them to create the polynomials p(x), which subsequently must be examined. There are some preliminary issues to underline:

- The polynomials must be monic and we set an integer value between 0 and -4 for a_1 (remember that $a_1 = -\operatorname{Tr}(\alpha)$).
- We set T := U₂ and N := |a₈| = |N(α)| such that N ≤ (U₂/8)⁴ (arithmetical-geometrical means inequality). By Selmane's estimates, N cannot be an exact multiple of 2, 3, 4 or 5. One verifies that N = 1 (unless a₁ = -3, -4, in this case also N = 7, 8, 9 are admissible).

JQ P

<ロト < 同ト < 臣ト < 臣ト 三 臣

The main goal

We want to detect every number field with n = 8, signature (2,3) and $|d_{\mathcal{K}}| \leq 5726300$. The idea is to range all the possible values for the symmetric functions S_m in the intervals $[-U_m, U_m]$, and use them to create the polynomials p(x), which subsequently must be examined. There are some preliminary issues to underline:

- The polynomials must be monic and we set an integer value between 0 and -4 for a_1 (remember that $a_1 = -\operatorname{Tr}(\alpha)$).
- We set T := U₂ and N := |a₈| = |N(α)| such that N ≤ (U₂/8)⁴ (arithmetical-geometrical means inequality). By Selmane's estimates, N cannot be an exact multiple of 2, 3, 4 or 5. One verifies that N = 1 (unless a₁ = -3, -4, in this case also N = 7, 8, 9 are admissible).
- The procedure may miss the minimum polynomial of a field with proper subfields; but these fields are already classified by Algorithmic Class Field Theory and Martinet's Theorem (in fact, we detect them anyway).

From now on, we assume N = 1, and that all the polynomials evaluated in 1 return an odd number.

▲□▶ ▲冊▶ ▲匣▶ ▲匣▶

E.

JQ P

From now on, we assume N = 1, and that all the polynomials evaluated in 1 return an odd number.

0) Given
$$S_1$$
, we have $a_1 = -S_1$.

We set the value for U_2 and then compute the bounds U_m for the absolute symmetric functions. We have then the intervals $[-U_m, U_m]$ (with $m \in \{2, ..., 8\}$ and $m \in \{-1, -2\}$). Select $a_8 \in \{-1, 1\}$.

SQA

From now on, we assume N = 1, and that all the polynomials evaluated in 1 return an odd number.

Remark: If p(1) is even, discard this polynomial and create the next by increasing a_7 of 1 (and so decreasing S_7 of 7).

500

<ロト < 同ト < 巨ト < 巨ト

Algorithmic steps

- 2) Before saying how to check p(x), let us show how to go on the next polynomial.
 - To create the next polynomial, one just has to increase a_7 of 2, decreasing then S_7 of 14, and keeping the previous coefficients.
 - Check and repeat this way until $S_7 < -U_7$: then increase a_6 of 1 and decrease S_6 of 6, and compute a new S_7 and a new a_7 , for which you can repeat what explained before.
 - Do so until $S_6 < -U_6$: then increase a_5 of 1, decreasing S_5 of 5, and compute new S_6 , a_6 , S_7 and a_7 . Then repeat the previous steps.
 - And so on for every S_m , until $S_m < -U_m$ (with $m \ge 2$).

SQA

<ロト < 同ト < 巨ト < 三ト

Algorithmic steps

- 2) Before saying how to check p(x), let us show how to go on the next polynomial.
 - To create the next polynomial, one just has to increase a_7 of 2, decreasing then S_7 of 14, and keeping the previous coefficients.
 - Check and repeat this way until $S_7 < -U_7$: then increase a_6 of 1 and decrease S_6 of 6, and compute a new S_7 and a new a_7 , for which you can repeat what explained before.
 - Do so until $S_6 < -U_6$: then increase a_5 of 1, decreasing S_5 of 5, and compute new S_6 , a_6 , S_7 and a_7 . Then repeat the previous steps.
 - And so on for every S_m , until $S_m < -U_m$ (with $m \ge 2$).

During the construction of the S_m 's one can already check the following:

- If $a_1 = 0$, then $S_3 \ge 0$.
- $S_2 \ge -U_2 + \frac{2}{n}a_1^2$
- $|S_3| \leq \left(\frac{S_2+T}{2}(S_4+2(T-S_2)^2)\right)^{1/2}$.
- $S_4 \geq -2(T-S_2)^2$.

JQ C

◆□▶ ◆□▶ ◆□▶ ◆□▶

- 3) If p(x) misses one of the following conditions, then it has to be discarded.
 - $|p(1)| = |N(\alpha 1)| \le ((U_2 2S_1 + 8)/8)^4$ and it must be an admissible norm for a field with $|d_K| \le 5726300$.
 - $|p(-1)| = |N(\alpha + 1)| \le ((U_2 + 2S_1 + 8)/8)^4$ and it must be an admissible norm for a field with $|d_K| \le 5726300$.

SQ Q

イロト イポト イミト イミト 三日

- 3) If p(x) misses one of the following conditions, then it has to be discarded.
 - $|p(1)| = |N(\alpha 1)| \le ((U_2 2S_1 + 8)/8)^4$ and it must be an admissible norm for a field with $|d_K| \le 5726300$.
 - $|p(-1)| = |N(\alpha + 1)| \le ((U_2 + 2S_1 + 8)/8)^4$ and it must be an admissible norm for a field with $|d_K| \le 5726300$.
 - $-a_7/a_8 = S_{-1} \in [-U_{-1}, U_{-1}]$ and $(a_7^2/a_8 - 2a_6)/a_8 = S_{-2} \in [-U_{-2}, U_{-2}].$
 - p(2), p(−2), p(3), p(−3), p(4), p(−4), p(5), p(−5) must be admissible norms.
 - $-8a_8 S_1a_7 S_2a_6 S_3a_5 S_4a_4 S_5a_3 S_6a_2 S_7a_1 = S_8 \in [-U_8, U_8].$
 - If p(x) satisfies every condition, then it is saved.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 ののの

Remark: Further conditions could be set, but it was not done in order to guarantee a reasonable time of computation (the worst case scenario, when $S_1 = 4$, takes less than two hours). All these computations were done in MATLAB.

SQA

Remark: Further conditions could be set, but it was not done in order to guarantee a reasonable time of computation (the worst case scenario, when $S_1 = 4$, takes less than two hours).

All these computations were done in MATLAB.

- 4) The .mat files are then translated into .gp files and read by PARI/GP. For every polynomial p(x) left, one finally checks if:
 - p(x) is irreducible.
 - The discriminant d_K of the number field generated by p(x) is negative (remember that $r_2 = 3$).
 - $d_K \geq -5726300.$
- 5) The few polynomials remaining define number fields which are classified via their isomorphism classes (with the command **nfisisom()** in PARI/GP).

 $\mathcal{O} \mathcal{O} \mathcal{O}$

《口》《聞》《臣》《臣》 [][]

Results

We applied the algorithm for every possible choice of $p(1) \pmod{2}$, N and S_1 , verifying 40 different cases.

E.

JQ P

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

We applied the algorithm for every possible choice of $p(1) \pmod{2}$, N and S_1 , verifying 40 different cases.

Theorem (B.)

Let d_K be the discriminant of a number field K with degree 8 and signature (2,3). Then the minimum value of $|d_K|$ is equal to 4286875.

Theorem (B.)

There are 56 number fields of degree 8 and signature (2,3) with $|d_K| \le 5726300$; with the exception of two non-isomorphic fields with $|d_K| = 5365963$, every field in the list is uniquely characterized by the value of $|d_K|$.

SQ (~

<ロト < 団ト < 団ト < 団ト = 三</p>

$-d_K$	Factorization	f(x)
4286875	$5^4 \cdot 19$	$x^8 - 3x^7 - x^6 + 7x^5 + 3x^4 - 6x^3 - 4x^2 + x + 1$
4296211	$199 \cdot 21589$	$x^8 - x^7 + 3x^5 - 4x^4 + 2x^3 + 2x^2 - 3x + 1$
4297507	2011 · 2137	$x^8 - 2x^6 - x^5 - x^3 + 2x^2 + x - 1$
4364587	29 · 150503	$x^8 - 3x^6 - 3x^5 + 4x^4 + 7x^3 - 2x^2 - 4x - 1$
4386467	$41\cdot83\cdot1289$	$x^{8} + 4x^{6} - 2x^{5} + 3x^{4} - 5x^{3} + x^{2} - 2x + 1$
4421387	$1321 \cdot 3347$	$x^8 - x^6 - x^5 + 2x^4 - x^3 - 2x^2 + 2x - 1$
4423907	prime	$x^8 - 2x^5 - 5x^4 - 5x^3 - 5x^2 - 2x - 1$
4456891	prime	$x^8 - 3x^6 - 3x^5 + 5x^4 + 6x^3 - 2x^2 - 4x - 1$
4461875	$5^4 \cdot 11^2 \cdot 59$	$x^8 - x^7 + x^6 + 2x^5 - 2x^4 + 2x^2 - x - 1$
4505651	prime	$x^8 - 3x^6 - 3x^5 + 5x^4 + 4x^3 - 3x^2 - x + 1$
4542739	prime	$x^8 - 4x^6 - 3x^5 + 6x^4 + 7x^3 - x^2 - 4x - 1$
4570091	$1249 \cdot 3659$	$x^8 - x^6 - x^5 + x^4 - x^3 - 2x^2 + x + 1$
4570723	prime	$x^{8} - 2x^{7} + x^{6} + 3x^{5} - 5x^{4} - 3x^{3} + 4x^{2} + x - 1$
4584491	$19\cdot 101\cdot 2389$	$x^8 - 3x^6 - x^5 + 3x^4 + 4x^3 - x^2 - 3x - 1$
4596992	2 ⁸ · 17957	$x^8 - 3x^6 - 2x^5 + 3x^4 - x^2 + 2x - 1$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ≫ ≪⊙

$-d_K$	Factorization	f(x)
4603987	prime	$x^8 - x^7 - 4x^6 - 3x^5 + 3x^4 + 8x^3 + 8x^2 + 4x + 1$
4614499	prime	$x^8 - x^6 - 3x^5 + x^4 + 2x^3 - x^2 + x + 1$
4616192	$2^{12}\cdot7^2\cdot23$	$x^8 - 2x^6 - 2x^5 + 2x^4 + 4x^3 + x^2 - 2x - 1$
4623371	$17\cdot 31^2\cdot 283$	$x^8 + x^6 - x^3 - x^2 - 1$
4648192	$2^8 \cdot 67 \cdot 271$	$x^8 - x^6 - 2x^5 - 2x^4 + 2x^2 + 2x + 1$
4663051	$31\cdot 359\cdot 419$	$x^8 - x^7 + x^6 - 3x^5 + 7x^4 - 6x^3 + x^2 + 2x - 1$
4690927	443 · 10589	$x^8 - 4x^6 - 4x^5 + 3x^4 + 6x^3 - x^2 - 3x + 1$
4711123	$43 \cdot 331^2$	$x^{8} + 2x^{6} - 7x^{5} - 4x^{4} - 9x^{3} + 9x^{2} + 6x + 1$
4725251	$59 \cdot 283^2$	$x^8 - 4x^6 - 2x^5 + 7x^4 + 5x^3 - 3x^2 - 4x - 1$
4761667	23 · 207029	$x^8 - 3x^6 - 2x^5 - 2x^4 + 3x^3 + 9x^2 + 6x + 1$
4775363	$1931 \cdot 2473$	$x^8 - 6x^6 - 2x^5 + 9x^4 + x^3 - 5x^2 + 1$
4785667	$29\cdot 59\cdot 2797$	$x^8 - x^5 - 4x^4 - 3x^3 + 2x^2 + 3x + 1$
4809907	$19 \cdot 253153$	$x^8 - 4x^6 - x^5 + 5x^4 + x^3 - x^2 - x - 1$
4858379	$17^{2} \cdot 16811$	$x^8 + 3x^6 - x^5 + 2x^4 - 3x^3 - 2x + 1$
4931267	$11\cdot 67\cdot 6691$	$x^8 - x^6 - x^5 - 6x^4 - 2x^3 + 17x^2 - 8x + 1$
4960000	$2^8 \cdot 5^4 \cdot 31$	$x^8 - x^6 - 6x^5 + 6x^4 - 2x^3 + 8x^2 - 6x + 1$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ♪ ▲□ ♪

$-d_K$	Factorization	f(x)
5040467	prime	$x^8 - 5x^6 - 3x^5 + 6x^4 + 4x^3 - 3x^2 - 2x + 1$
5040547	$37\cdot 59\cdot 2309$	$x^8 - 2x^6 + 3x^4 - 3x^3 - 3x^2 + 4x + 1$
5103467	prime	$x^8 - 5x^6 - x^5 + 8x^4 + 2x^3 - 4x^2 - x + 1$
5107019	prime	$x^8 - 3x^6 - 3x^5 + 3x^4 + 9x^3 + 6x^2 + x - 1$
5118587	29 · 176503	$x^8 - 2x^6 - 5x^5 - 6x^4 + 11x^3 + 20x^2 + 9x + 1$
5149367	$47 \cdot 331^2$	$x^8 - 2x^6 - 2x^5 + 8x^4 - 2x^3 - 5x^2 + 4x - 1$
5155867	449 · 11483	$x^8 - 3x^6 - x^5 + 3x^4 + x^3 - 2x^2 - x + 1$
5165819	641 · 8059	$x^8 - 6x^6 - 5x^5 + 5x^4 + 9x^3 + 6x^2 + 2x + 1$
5204491	prime	$x^8 - 6x^6 - 7x^5 + 8x^4 + 19x^3 + 15x^2 + 6x + 1$
5233147	prime	$x^{8} + 2x^{6} - x^{5} - 11x^{4} - 9x^{3} + 2x^{2} + 4x + 1$
5272027	$317 \cdot 16631$	$x^8 + x^6 - 7x^5 + 6x^4 - 4x^3 + 5x^2 - 4x + 1$
5286727	prime	$x^8 - 4x^6 + 5x^4 - 3x^2 - x + 1$
5293867	227 · 23321	$x^8 - 4x^6 - x^5 + 8x^4 + 5x^3 - 6x^2 - 5x + 1$
5344939	$521 \cdot 10259$	$x^8 - 5x^6 - 4x^5 + 5x^4 + 16x^3 + 5x^2 - 6x + 1$
5346947	839 · 6373	$x^8 - 6x^6 - 3x^5 + 9x^4 + 7x^3 + x^2 + x + 1$
5359051	prime	$x^8 - 4x^6 - 3x^5 + 3x^4 + 11x^3 + 10x^2 + 4x + 1$
		◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へで

$-d_K$	Factorization	f(x)
5365963	$67 \cdot 283^2$	$x^8 - x^6 - 2x^5 + 5x^3 + 5x^2 + 4x + 1$
5365963	$67 \cdot 283^2$	$x^8 - 3x^5 - 5x^4 - 5x^3 + 11x^2 - x + 1$
5369375	$5^4 \cdot 11^2 \cdot 71$	$x^8 + 4x^6 - 6x^5 + 6x^4 - 12x^3 - 7x^2 - 6x + 1$
5371171	$13 \cdot 413167$	$x^8 - x^6 - 5x^5 + 2x^4 + 9x^2 - 6x + 1$
5420747	prime	$x^8 - 5x^6 - 4x^5 + 5x^4 + 8x^3 + 5x^2 + 2x + 1$
5525731	$17 \cdot 325043$	$x^8 - 5x^6 - 3x^5 + 3x^4 - 2x^3 - 8x^2 - 4x + 1$
5635607	$61 \cdot 92387$	$x^8 + 2x^6 - 5x^5 - 6x^4 + 8x^3 + 2x^2 - 4x + 1$
5671691	$193 \cdot 29387$	$x^8 - 3x^6 - 3x^5 + 4x^4 + 3x^3 - 2x^2 + 1$
5697179	prime	$x^8 + x^6 - 8x^4 - 3x^3 + 5x^2 + 2x + 1$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 - シッペ

Almost every polynomial survived to the test was with N = 1 and p(1) odd. There were few with N = 1 and p(1) even. No polynomials with N > 1 survived to the tests.

SQA

<! ⊇ ▶ < ∃

< □ ▶

- Almost every polynomial survived to the test was with N = 1 and p(1) odd. There were few with N = 1 and p(1) even.
 No polynomials with N > 1 survived to the tests.
- Every number field detected was already contained in the Number Fields Database http://galoisdb.math.upb.de provided by Jüergen Klüners and Gunter Malle (but not in LMFDB). However, they explicitly made no claim of complete classification.

SQA

- Almost every polynomial survived to the test was with N = 1 and p(1) odd. There were few with N = 1 and p(1) even.
 No polynomials with N > 1 survived to the tests.
- Every number field detected was already contained in the Number Fields Database http://galoisdb.math.upb.de provided by Jüergen Klüners and Gunter Malle (but not in LMFDB). However, they explicitly made no claim of complete classification.
- Actually, all the minimum polynomials were found in a previous attempt with $|d_K| \leq 5000000$. This suggests that this method is somehow too coarse.

SQA

- 4 同 ト - 4 三 ト - 4 三 ト

Thank you for your attention.

< □ ▶

▲ 伊 ▶ ▲ 王 ▶

=

E.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$