Diophantine problems with prime variables

Alessandro Zaccagnini

This is a report on joint work with Alessandro Gambini and Alessandro Languasco [1], where we improve the results in [2]. We deal with a Diophantine approximation problem with prime variables: the goal is to prove that the inequality

$$
\begin{equation*}
\left|\lambda_{1} p_{1}+\lambda_{2} p_{2}+\lambda_{3} p_{3}^{k}-\omega\right| \leq\left(\max \left\{p_{1}, p_{2}, p_{3}^{k}\right\}\right)^{-\psi(k)+\varepsilon} \tag{1}
\end{equation*}
$$

has infinitely many solutions in prime variables p_{1}, p_{2} and p_{3} for any given real number ω, under as mild Diophantine assumptions on the real constants λ_{1}, λ_{2} and λ_{3} as possible and with $\psi=\psi(k)>0$ in an interval $\left(1, k_{0}\right.$]. In [2] we proved that we can take $\psi(k)=$ $(4-3 k) /(10 k)$ for $k \in(1,4 / 3)$. Now we improve on this result both in the admissible range for k and in the exponent $\psi(k)$ in (1), in the common range.

Assume that $1<k \leq 3, \lambda_{1}, \lambda_{2}$ and λ_{3} are non-zero real numbers, not all of the same sign, that $\lambda_{1} / \lambda_{2}$ is irrational and let ω be a real number. The inequality (1) has infinitely many solutions in prime variables p_{1}, p_{2}, p_{3} for any $\varepsilon>0$, where

$$
\psi(k)= \begin{cases}(3-2 k) /(6 k) & \text { if } 1<k \leq \frac{6}{5} \tag{2}\\ 1 / 12 & \text { if } \frac{6}{5}<k \leq 2 \\ (3-k) /(6 k) & \text { if } 2<k<3 \\ 1 / 24 & \text { if } k=3\end{cases}
$$

It is easily seen that the hypothesis on the sign is natural, if one wants to approximate all real numbers, whereas the hypothesis on the ratio $\lambda_{1} / \lambda_{2}$ is needed to avoid trivial cases when (1) can not hold. For the proof we use a modern variant of the technique introduced in the 1930's by Davenport \& Heilbronn. The values for ψ given by (2) depend on suitable bounds for the relevant exponential sums over prime powers.

References

[1] A. Gambini, A. Languasco, and A. Zaccagnini, A Diophantine approximation problem with two primes and one k-th power of a prime, submitted. Arxiv preprint 1706.00343.
[2] A. Languasco and A. Zaccagnini, A Diophantine problem with prime variables, Highly Composite: Papers in Number Theory, Proceedings of the "International Meeting in Number Theory," celebrating the 60th birthday of Prof. R. Balasubramanian, Harish-Chandra Research Institute, Allahabad, Dec. 2011 (V. Kumar Murty, D. S. Ramana, and R. Thangadurai, eds.), Ramanujan Mathematical Society-Lecture Notes Series, vol. 23, 2016, pp. 157168.

Dipartimento di Scienze Matematiche, Fisiche e Informatiche
Università di Parma

