ON THE GREATEST COMMON DIVISOR OF n AND THE n TH FIBONACCI NUMBER

PAOLO LEONETTI

Let \mathcal{A} be the set of all integers of the form $\operatorname{gcd}\left(n, F_{n}\right)$, where n is a positive integer and F_{n} denotes the nth Fibonacci number. We prove that

$$
\#(\mathcal{A} \cap[1, x]) \gg x / \log x
$$

for all $x \geq 2$, and that

$$
\#(\mathcal{A} \cap[1, x])=o(x)
$$

as $x \rightarrow \infty$, see [3]. This is a joint work with Carlo Sanna.
As a consequence, we obtain that the set of all integers n such that n divides F_{n} has zero asymptotic density relative to \mathcal{A}. Related results were given in $[1,4,5]$.

The proofs rely on a recent result of Cubre and Rouse [2] which gives, for each positive integer n, an explicit formula for the density of primes p such that n divides the rank of appearance of p, that is, the smallest positive integer k such that p divides F_{k}.

References

[1] R. André-Jeannin, Divisibility of generalized Fibonacci and Lucas numbers by their subscripts, Fibonacci Quart. 29 (1991), no. 4, 364-366.
[2] P. Cubre and J. Rouse, Divisibility properties of the Fibonacci entry point, Proc. Amer. Math. Soc. 142 (2014), no. 11, 3771-3785.
[3] P. Leonetti and C. Sanna, On the greatest common divisor of n and the nth Fibonacci number, Rocky Mountain J. Math., to appear.
[4] F. Luca and E. Tron, The distribution of self-Fibonacci divisors, Advances in the theory of numbers, Fields Inst. Commun., vol. 77, Fields Inst. Res. Math. Sci., Toronto, ON, 2015, pp. 149-158.
[5] C. Sanna, On numbers n dividing the nth term of a Lucas sequence, Int. J. Number Theory 13 (2017), no. 3, 725-734.

Università "Luigi Bocconi", Department of Statistics, Milan, Italy
E-mail address: leonetti.paolo@gmail.com

