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Let A be the set of all integers of the form gcd(n, Fn), where n is a positive integer
and Fn denotes the nth Fibonacci number. We prove that

# (A ∩ [1, x])� x/ log x

for all x ≥ 2, and that
# (A ∩ [1, x]) = o(x)

as x→∞, see [3]. This is a joint work with Carlo Sanna.
As a consequence, we obtain that the set of all integers n such that n divides Fn has

zero asymptotic density relative to A. Related results were given in [1, 4, 5].
The proofs rely on a recent result of Cubre and Rouse [2] which gives, for each positive

integer n, an explicit formula for the density of primes p such that n divides the rank
of appearance of p, that is, the smallest positive integer k such that p divides Fk.
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