Low discriminants for number fields of degree 8 and signature $(2,3)$

Francesco Battistoni

Università degli Studi di Milano

Let K be a number field of degree n, with discriminant d_{K}, and let r_{1} be the number of real embeddings of K in \mathbb{C} and r_{2} be the number of couples of complex embeddings, so that $n=r_{1}+2 r_{2}$.
A classical problem asks to establish the minimum value for $\left|d_{K}\right|$ when K ranges in the set of fields with a fixed signature $\left(r_{1}, r_{2}\right)$. During the last century many methods for answering the question were set: from the classical tools of Geometry of Numbers invented by Minkowski to the analytic estimates involving the Dedekind Zeta functions, due to Odlyzko [2], Poitou [5] and Serre [6] up to the algorithmic procedures, based on number-geometric ideas, developed by Pohst [3], Martinet [1] and Diaz y Diaz [4] (in collaboration with the previous authors): with these ides the problem was solved for $n \leq 7$, with any signature, and also for $n=8$, if the signature is either $(8,0)$ or $(0,4)$. In this work we exploit the methods aforementioned in order to prove the following results:

Theorem 1. Let d_{K} be the discriminant of a number field K with degree 8 and signature $(2,3)$. Then the minimum value of $\left|d_{K}\right|$ is equal to 4286875.

Theorem 2. There are 56 number fields of degree 8 and signature $(2,3)$ with $\left|d_{K}\right| \leq$ 5726300; with the exception of two non-isomorphic fields with $\left|d_{K}\right|=5365963$, every field in the list is uniquely characterized by the value of $\left|d_{K}\right|$.

References

[1] Jacques Martinet. Méthodes géométriques dans la recherche des petits discriminants. In Séminaire de théorie des nombres, Paris 1983-84, pages 147-179, 1985.
[2] Andrew M Odlyzko. Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions: a survey of recent results. Journal de théorie des nombres de Bordeaux, 2(1):119-141, 1990.
[3] Michael Pohst. On the computation of number fields of small discriminants including the minimum discriminants of sixth degree fields. Journal of Number Theory, 14(1):99117, 1982.
[4] Michael Pohst, Jacques Martinet, and Francisco Diaz y Diaz. The minimum discriminant of totally real octic fields. Journal of Number Theory, 36(2):145-159, 1990.
[5] Georges Poitou. Sur les petits discriminants. Seminaire Delange-Pisot-Poitou. Theorie des nombres, 18(1):1-17, 1977.
[6] Jean Pierre Serre. Minorations de discriminants, note of october 1975, published on pp. 240-243 in vol. 3 of jean-pierre serre, collected papers, 1986.

